248
Views
12
CrossRef citations to date
0
Altmetric
Review

S100B protein: general characteristics and pathophysiological implications in the Central Nervous System

, , , , , , , , , , , , & show all
Pages 313-321 | Received 10 Feb 2020, Accepted 31 Jul 2020, Published online: 19 Aug 2020

References

  • Choi D. Antagonizing excitotoxicity: a therapeutic strategy for stroke? Mt Sinai J Med. 1998;65(2):133–138.
  • Bandyopadhyay S, Tfelt-Hansen J, Chattopadhyay N. Diverse roles of extracellular calcium-sensing receptor in the central nervous system. J Neurosci Res. 2010;88(10):2073–2082.
  • Freire MAM. Pathophysiology of the neurodegeneration following traumatic brain injury. West Indian Med J. 2012;61(7):751–755.
  • Elsholz F, Harteneck C, Muller W, et al. Calcium-a central regulator of keratinocyte differentiation in health and disease. Eur J Dermatol. 2014;24(6):650–661.
  • Yáñez M, Gil-Longo J, Campos-Toimil M. Calcium binding proteins. Adv Exp Med Biol. 2012;19:461–482.
  • Miki Y, Gion Y, Mukae Y, et al. Morphologic, flow cytometric, functional, and molecular analyses of s100b positive lymphocytes, unique cytotoxic lymphocytes containing S100b protein. Eur J Haematol. 2013;90(2):99–110.
  • Leranth C, Ribak CE. Calcium-binding proteins are concentrated in the CA2 field of the monkey hippocampus: a possible key to this region's resistance to epileptic damage. Exp Brain Res. 1991;85(1):129–136.
  • German DC, Manaye KF, Sonsalla PK, et al. Midbrain dopaminergic cell loss in Parkinson's disease and MPTP-induced parkinsonism: sparing of calbindin-D28k-containing cells . Ann N Y Acad Sci. 1992;648:42–62.
  • Heizmann CW. Calcium signaling in the brain. Acta Neurobiol Exp (Wars). 1993;53(1):15–23.
  • Lukas W, Jones KA. Cortical neurons containing calretinin are selectively resistant to calcium overload and excitotoxicity in vitro. Neuroscience. 1994;61(2):307–316.
  • DeFelipe J. Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat. 1997;14(1):1–19.
  • Druga R. Neocortical inhibitory system. Folia Biol (Praha). 2009;55(6):201–217.
  • Freire MAM, Faber J, Lemos NA, et al. Distribution and morphology of calcium-binding proteins immunoreactive neurons following chronic tungsten multielectrode implants. Plos One. 2015;10(6):e0130354.
  • Fairless R, Williams SK, Diem R. Calcium-binding proteins as determinants of Central Nervous System neuronal vulnerability to disease. IJMS. 2019;20(9):2146. pii:
  • Beissel B. Avaliação funcional de células de carcinoma mamário humano t47d após transdução com anti-sense para a proteína carreadora de cálcio s100p. Tese de Doutorado: Universidade de São Paulo, 2005. In portuguese.
  • Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun. 1965;19(6):739–744.
  • Michetti F, Corvino V, Geloso MC, et al. The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem. 2012;120(5):644–659.
  • Li F, Men X, Zhang W. S100 Protein in breast tumor. Indian J Cancer. 2014;51(7):67–55.
  • Astrand R, Undén J, Romner B. Clinical use of the calcium-binding S100B protein. Methods Mol Biol. 2013;963:373–384.
  • Wheeler LC, Donor MV, Prell JS, et al. Multiple evolutionary origins of ubiquitous Cu2+ and Zn2+ binding in the S100 protein family. Plos One. 2016;11(10):e0164740.
  • Costa DCA, Silva LRS, Coertjens S. Mecanismos e funções da proteína S100B durante a hipóxia: uma revisão de literatura. RNC. 2013;21(03):408–419.
  • Wang T, Huo X, Chong Z, et al. A review of S100 protein family in lung cancer. Clin Chim Acta. 2018;476:54–59.
  • Gross SR, Goh SCGT, Barraclough R, et al. Joining S100 proteins and migration: for better or for worse, in sickness and in health. Cell Mol Life Sci. 2014;71(9):1551–1579.
  • Li D, Zhu B, Ishikawa T, et al. Immunohistochemical distribution of S-100 protein in the cerebral cortex with regard to the cause of death in forensic autopsy. Leg Med (Tokyo). 2006;8(2):78–85.
  • Glenney JR, Kindy MS, Zokas L. Isolation of a new member of the S100 protein family: amino acid sequence, tissue, and subcellular distribution. J Cell Biol. 1989;108(2):569–578.
  • Diaz-Romero J, Quintin A, Schoenholzer E, et al. S100A1 and S100B expression patterns identify differentiation status of human articular chondrocytes. J Cell Physiol. 2014;229(8):1106–1117.
  • Martinez-Aguilar J, Clifton-Bligh R, Molloy MP. A multiplexed, targeted mass spectrometry assay of the S100 protein family uncovers the isoform-specific expression in thyroid tumours. BMC Cancer. 2015;15:199–205.
  • Choi Y, Seo H, Kim M, et al. Dynamic expression of calcium-regulatory molecules, TRPV6 and S100G, in the uterine endometrium during pregnancy in pigs. Biol Reprod. 2009;81(6):1122–1130.
  • Shor APT. Associação da proteína S100P e do receptor de estrogênio com o potencial evolutivo de lesões proliferativas epiteliais mamárias em pacientes com calcificações radiológicas. Tese de Doutorado: Universidade de São Paulo; 2004. In portuguese.
  • Cheong KA, Noh M, Kim CH, et al. S100B as a potential biomarker for the detection of cytotoxicity of melanocytes. Exp Dermatol. 2014;23(3):165–171.
  • Campos LMG, Pinato L, Spilla CSG, et al. Neuroanatomical mapping of S100 immunoreactivity reviewed. J Neurol Neurophysiol. 2015;06(06):1–8.
  • Snyder-Ramos SA, Gruhlke T, Bauer H, et al. Cerebral and extracerebral release of protein S100B in cardiac surgical patients. Anaesthesia . 2004;59(4):344–349.
  • Züngün C, Yilmaz FM, Tutkun E, et al. Assessment of serum S100B and neuron specific enolase levels to evaluate the neurotoxic effects of organic solvent exposure. Clin Toxicol. 2013;51(8):748–751.
  • Gawlikowski T, Golasik M, Gomółka E, et al. Proteins as biomarkers of carbon monoxide neurotoxicity. Inhal Toxicol. 2014;26(14):885–890.
  • Zhang Q, Zhu M, Cheng W, et al. Downregulation of 425G>A variant of calcium-binding protein S100A14 associated with poor differentiation and prognosis in gastric cancer. J Cancer Res Clin Oncol. 2015;141(4):691–703.
  • Rommer PS, Kamin F, Petzold A, et al. Effects of repeated intrathecal triamcinolone-acetonide application on cerebrospinal fluid biomarkers of axonal damage and glial activity in multiple sclerosis patients. Mol Diagn Ther. 2014;18(6):631–637.
  • Stefansson RL, Wollmann RL, Moore BW. Distribution of S-100 protein outside the Central Nervous System. Brain Res. 1982;234(2):309–317.
  • Liu J, Wang H, Zhang L, et al. S100B transgenic mice develop features of Parkinson's disease. Arch Med Res. 2011;42(1):1–7.
  • Martins RO, Rotta NT, Portela LV, et al. S100B protein related neonatal hypoxia. Arq Neuropsiquiatr. 2006;64(1):24–29.
  • Portela LV, Tort AB, Schaf DV, et al. The serum S100B concentration is age dependent. Clinical Chem. 2002;48(6):950–952.
  • Shapiro LA, Bialowas-Mcgoey LA, Whitaker-Azmitia PM. Effects of S100B on serotonergic plasticity and neuroinflamation in the hippocampus in Down syndrome and Alzheimer disease: studies in an S100B overexpressing mouse model. Review article. Cardiovasc Psychiatry Neurol. 2010;2010:1–13.
  • Al-Ayadhi, A, Mostafa GA. A lack of association between elevated serum levels of S100B protein and autoimmunity in autistic children. J Neuroinflamm. 2012;9:54.
  • Hendoui N, Beigmohammadi A, Mahmoodpoor A, et al. Reliability of calcium-binding protein S100B measurement toward optimization of hyperosmolal therapy in traumatic brain injury. Eur Rev Med Pharmacol Sci. 2013;17:477–485.
  • Allan SM, Rothwell NJ. Inflammation in Central Nervous System injury. Philos Trans R Soc Lond, B, Biol Sci. 2003;358(1438):1669–1677.
  • Clark DPQ, Perreau VM, Shultz SR, et al. Inflammation in traumatic brain injury: roles for toxic A1 astrocytes and microglial-astrocytic crosstalk. Neurochem Res. 2019;44(6):1410–1424.
  • Freire MAM, Guimaraes JS, Santos JR, et al. Morphometric analysis of NADPH diaphorase reactive neurons in a rat model of focal excitotoxic striatal injury. Neuropathology. 2016;36(6):527–534.
  • Freire MAM, Lima RR, Nascimento PC, et al. Effects of methylmercury on the pattern of NADPH diaphorase expression and astrocytic activation in the rat. Ecotoxicol Environ Saf. 2020;201:110799.
  • Karve IP, Taylor JM, Crack PJ. The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol. 2016;173(4):692–702.
  • Zhao J, Wang B, Huang T, et al. Glial response in early stages of traumatic brain injury. Neurosci Lett. 2019; 708:134335.
  • Elly HM, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol. 2015;32:121–130.
  • Bianchi R, Giambanco I, Donato R. S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha . Neurobiol Aging. 2010;31(4):665–677.
  • Cirillo C, Capoccia E, Iuvone T, et al. S100B inhibitor pentamidine attenuates reactive gliosis and reduces neuronal loss in a mouse model of Alzheimer’s disease. BioMed Res Int. 2015;2015:1–11.
  • Villarreal A, Seoane R, Torres AG, et al. S100B protein activates a rage-dependent autocrine loop in astrocytes: implications for its role in the propagation of reactive gliosis. J Neurochem. 2014;131(2):190–205.
  • Fujiya A, Nagasaki H, Seino Y, et al. The role of S100B in the interaction between adipocytes and macrophages. Obesity (Silver Spring). 2014;22(2):371–379.
  • 55. Campos LMG. Estudo da distribuição da proteína S100b em encéfalo de ratos.. Dissertação (Mestrado em Ciências Morfofuncionais) - Instituto de Ciências Biomédicas. São Paulo: Universidade de São Paulo; 2007. In portuguese.
  • Zhang J, Zhou W, Qiao H. Bioenergetic homeostasis decides neuroprotection or neurotoxicity induced by volatile anesthetics: a uniform mechanism of dual effects. Med Hypotheses. 2011;77(2):223–229.
  • Bredt DS, Snyder SH. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci USA. 1989;86(22):9030–9033.
  • Freire MAM, Franca JG, Picanço-Diniz CW, et al. Neuropil reactivity, distribution and morphology of NADPH diaphorase type I neurons in the barrel cortex of the adult mouse. J Chem Neuroanat. 2005;30(2-3):71–81.
  • Garthwaite J. NO as a multimodal transmitter in the brain: discovery and current status. Br J Pharmacol. 2019;176(2):197–211.
  • Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci. 1997;20(3):132–139.
  • Moncada S, Palmer RM, Higgs EA. Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem Pharmacol. 1989;38(11):1709–1715.
  • Vincent SR. Nitric oxide neurons and neurotransmission. Prog Neurobiol. 2010;90(2):246–255.
  • Kozlov AV, Bahrami S, Redl H, et al. Alterations in nitric oxide homeostasis during Traumatic Brain Injury. Biochim Biophys Acta Mol Basis Dis. 2017;1863(10 Pt B):2627–2632.
  • Thelin EP, Nelson DW, Bellander BM. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir (Wien)). 2017;159(2):209–225.
  • Bellander BM, Olafsson IH, Ghatan PH, et al. Secondary insults following traumatic brain injury enhance complement activation in the human brain and release of the tissue damage marker S100B. Acta Neurochir (Wien)). 2011;153(1):90–100.
  • Lopes RS, Cardoso MM, Sampaio AO, Barbosa MS, Jr, et al. Indomethacin treatment reduces microglia activation and increases numbers of neuroblasts in the subventricular zone and ischaemic striatum after focal ischaemia. J Biosci. 2016;41(3):381–394.
  • Andersson JPA, Linér MH, Jönsson H. Increased serum levels of the brain damage marker S100B after apnea in trained breath-hold divers: a study including respiratory and cardiovascular observations. J Appl Physiol. 2009;107(3):809–815.
  • Lai PMR, Du R. Association between s100b levels and long-term outcome after aneurismal subarachnoid hemorrage: systematic review and pooled analysis. Plos One. 2016;11(3):e0151853.
  • Kranaster L, Janke C, Mindt S, et al. protein S-100 and neuron-specific enolase serum levels remain unaffected by electroconvulsive therapy in patients with depression. J Neural Transm (Vienna). 2014;121(11):1411–1415.
  • Fernandez-Flores A, Díaz-Galvez FJ. S100 expression by atypical megakaryocytes: a previously unreported potential pitfall in dermatopathology. J Cutan Pathol. 2014;41(12):963–968.
  • Morera-Fumero AL, Díaz-Meza E, Abreu-Gonzalez P, et al. Day/night changes in serum S100B protein concentrations in acute paranoid schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2017;75:207–212.
  • Mesa SP, Santotoribio JD, Ramos Ramos V, et al. Brain damage after general anesthesia. Med Clin (Barc). 2016;146(9):384–388.
  • Steiner J, Bernstein HG, Bielau H, et al. S100B-immunopositive glia is elevated in paranoid as compared to residual schizophrenia: a morphometric study. J Psychiatr Res. 2008;42(10):868–876.
  • Steiner J, Bernstein HG, Bogerts B, et al. Potential roles of S100B in schizophrenia. Arch Clin Psychiatry. 2013;40(1):35–40.
  • Rothermundt M, Missler U, Arolt V, et al. Increased S100B blood levels in unmedicated and treated schizophrenic patients are correlated with negative symptomatology. Mol Psychiatry. 2001; 6(4):445–449.
  • Rothermundt M, Falkai P, Ponath G, et al. Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol Psychiatry. 2004;9(10):897–899.
  • Schroeter ML, Abdul-Khaliq H, Krebs M, et al. Serum markers support disease-specific glial pathology in major depression. J Affect Disord. 2008;111(2-3):271–280.
  • Rothermundt M, Ohrmann P, Abel S, et al. Glial cell activation in a subgroup of patients with schizophrenia indicated by increased S100B serum concentrations and elevated myo-inositol. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(2):361–364.
  • Liu Y, Buck DC, Neve KA. Novel unteraction of the dopamine D 2 receptor and the Ca 2+ binding protein S100B: Role in D 2 receptor function. Mol Pharmacol. 2008;74(2):371–378.
  • Van Eldik LJ, Wainwright MS. The Janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restor Neurol Neurosci. 2003;21(3-4):97–108.
  • Morquette P, Verdier D, Kadala A, et al. An astrocyte-dependent mechanism for neuronal rhythmogenesis. Nat Neurosci. 2015;18(6):844–854.
  • Sathe K, Maetzler W, Lang JD, et al. S100B is increased in Parkinson's disease and ablation protects against MPTP-induced toxicity through the RAGE and TNF-α pathway . Brain. 2012;135(Pt 11):3336–3347.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.