387
Views
5
CrossRef citations to date
0
Altmetric
Review Article

A mechanistic overview of spinal cord injury, oxidative DNA damage repair and neuroprotective therapies

& ORCID Icon
Pages 307-321 | Received 27 Aug 2020, Accepted 27 Mar 2021, Published online: 28 Apr 2021

References

  • Grillner S. The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci. 2003;4(7):573–586.
  • Selverston AI. A neural infrastructure for rhythmic motor patterns. Cell Mol Neurobiol. 2005;25(2):223–244.
  • Chen Y, Tang Y, Vogel LC, et al. Causes of spinal cord injury. Top Spinal Cord Inj Rehabil. 2013;19(1):1–8.
  • Jain NB, Ayers GD, Peterson EN, et al. Traumatic spinal cord injury in the United States, 1993–2012. JAMA. 2015;313(22):2236–2243.
  • Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine (Phila Pa 1976)). 2001;26(24 Suppl):S2–S12.
  • Dumont RJ, Okonkwo DO, Verma S, et al. Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol. 2001;24(5):254–264.
  • McKinley WO, Seel RT, Hardman JT. Nontraumatic spinal cord injury: incidence, epidemiology, and functional outcome. Arch. Phys. Med. Rehabil. 1999;80(6):619–623.
  • van den Berg MEL, Castellote JM, de Pedro-Cuesta J, et al. Mahillo-Fernandez, I. Survival after spinal cord injury: a systematic review. J Neurotrauma. 2010;27(8):1517–1528.
  • Kalsi-Ryan S, Beaton D, Curt A, et al. Outcome of the upper limb in cervical spinal cord injury: Profiles of recovery and insights for clinical studies. J Spinal Cord Med. 2014;37(5):503–510.
  • Ackery A, Tator C, Krassioukov A. A global perspective on spinal cord injury epidemiology. J Neurotrauma. 2004;21(10):1355–1370.
  • Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey?Spinal Cord. 2006;44(9):523–529.
  • Fitzharris M, Cripps R, Lee B. Estimating the global incidence of traumatic spinal cord injury. Spinal Cord. 2014;52(2):117–122.
  • Lee B, Cripps R, Fitzharris M, et al. The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal Cord. 2014;52(2):110–116.
  • Jazayeri SB, Beygi S, Shokraneh F, et al. Incidence of traumatic spinal cord injury worldwide: a systematic review. Eur Spine J. 2015;24(5):905–918.
  • Hachem LD, Ahuja CS, Fehlings MG. Assessment and management of acute spinal cord injury: from point of injury to rehabilitation. J Spinal Cord Med. 2017;40(6):665–675.
  • WHO, WHO | Spinal Cord Injury. WHO, 2013. Fact sheet N◦384. Available online at: https://www.who.int/news-room/fact-sheets/detail/spinal-cordinjury.
  • Rowland JW, Hawryluk GW, Kwon B, et al. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus. 2008;25(5):E2
  • Choo AM, Liu J, Liu Z, et al. Modeling spinal cord contusion, dislocation, and distraction: characterization of vertebral clamps, injury severities, and node of Ranvier deformations. J Neurosci Methods. 2009;181(1):6–17. 04.007
  • Tator C, Fehlings M. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 1991;75(1):15–26.
  • Figley SA, Khosravi R, Legasto JM, et al. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury. J Neurotrauma. 2014;31(6):541–552.
  • Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars)). 2011;71(2):281–299. PMID: 21731081
  • Fehlings MG, Vaccaro A, Wilson JR, et al. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PloS One. 2012;7(2):e32037.
  • Wilson JR, Tetreault LA, Kwon BK, et al. Timing of Decompression in Patients With Acute Spinal Cord Injury: A Systematic Review. Global Spine J. 2017;7(3Suppl):95–115S.
  • Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column. JAMA. 1911;LVII(11):878–880.
  • Xiong Y, Rabchevsky AG, Hall ED. Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J Neurochem. 2007;100(3):639–649.
  • Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol. 2008;209(2):378–388.
  • Fenrich KK, Weber P, Rougon G, et al. Long- and short-term intravital imaging reveals differential spatiotemporal recruitment and function of myelomonocytic cells after spinal cord injury. J Physiol. 2013;591(19):4895–4902.
  • von Leden RE, Yauger YJ, Khayrullina G, et al. Central nervous system injury and nicotinamide adenine dinucleotide phosphate oxidase: oxidative stress and therapeutic targets. J Neurotrauma. 2017;34(4):755–764. 89
  • Tran AP, Warren PM, Silver J. The biology of regeneration failure and success after spinal cord injury. Physiol Rev. 2018;98(2):881–917.
  • Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Myelin damage and repair in pathologic CNS: challenges and prospects. Front Mol Neurosci. 2015;8:35
  • Li GL, Farooque M, Holtz A, et al. Apoptosis of oligodendrocytes occurs for long distances away from the primary injury after compression trauma to rat spinal cord. Acta Neuropathol. 1999;98(5):473–480.
  • Park E, Velumian AA, Fehlings MG. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma. 2004;21(6):754–774.
  • Wilson JR, Hashimoto RE, Dettori JR, et al. Spinal cord injury and quality of life: a systematic review of outcome measures. Evid Based Spine Care J. 2011;2(1):37–44.
  • Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 2019;10:282
  • Koyanagi I, Tator CH, Theriault E. Silicone rubber microangiography of acute spinal cord injury in the rat. Neurosurgery. 1993;32(2):260–268.
  • Tator CH, Koyanagi I. Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg. 1997;86(3):483–492.
  • Sámano C, Kaur J, Nistri A. A study of methylprednisolone neuroprotection against acute injury to the rat spinal cord in vitro. Neuroscience. 2016;315:136–149.
  • Couillard-Despres S, Bieler L, Vogl M. Pathophysiology of Traumatic Spinal Cord Injury. In. Weidner N., Rupp R., Tansey K, editors. Neurological Aspects of Spinal Cord Injury. Cham, Springer; 2017. https://doi.org/10.1007/978-3-319-46293-6_19
  • Hayashi N, Green BA, Mora J, et al. Simultaneous measurement of local blood flow and tissue oxygen in rat spinal cord. Neurol Res. 1983;5(4):49–58. 8588
  • Ahuja CS, Martin AR, Fehlings M. Recent advances in managing a spinal cord injury secondary to trauma. F1000Res. 2016;5:1017.
  • Agrawal S, Fehlings M. Mechanisms of secondary injury to spinal cord axons in virto: role of Na+, Na(+)-K(+)-ATPase, the Na(+)-H + exchanger, and the Na(+)-Ca2+ exchanger. J Neurosci. 1996;16(2):545–552.
  • Kaur J, Flores Gutiérrez J, Nistri A. Neuroprotective effect of propofol against excitotoxic injury to locomotor networks of the rat spinal cord in vitro. Eur J Neurosci. 2016;44(7):2418–2430.
  • Kaur J, Rauti R, Nistri A. Nicotine-mediated neuroprotection of rat spinal networks against excitotoxicity. Eur J Neurosci. 2018;47(11):1353–1374.
  • Petrović A, Kaur J, Tomljanović I, et al. Pharmacological induction of Heat Shock Protein 70 by celastrol protects motoneurons from excitotoxicity in rat spinal cord in vitro. Eur J Neurosci. 2019;49(2):215–231.
  • Nicholls D, Attwell D. The release and uptake of excitatory amino acids. Trends Pharmacol Sci. 1990;11(11):462–468.
  • Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):1–105.
  • Robinson MB. Regulated trafficking of neurotransmitter transporters: common notes but different melodies. J Neurochem. 2002;80(1):1–11.
  • Olney J. Excitotoxicity, apoptosis and neuropsychiatric disorders. Curr Opin Pharmacol. 2003;3(1):101–109.
  • Sweatt JD. Chapter 8 – The NMDA Receptor. Mechanisms of Memory Elsevier Inc. 2010;190–207. https://doi.org/10.1016/B978-0-12-374951-2.00008-1.
  • Yadav R, Dravid SM, Yuan H, et al. AMPA Receptors: Molecular Biology and Pharmacology. Reference Module in Neuroscience and Biobehavioral Psychology. Elsevier Ltd. 2017. 311–318. https://doi.org/10.1016/B978-008045046-9.01221-3
  • Epsztein J, Represa A, Crépel V. Role of kainate receptors in glutamatergic synaptic transmission: Implications for acute and chronic seizure generation. In The Curated Reference Collection in Neuroscience and Biobehavioral Psychology. Elsevier Science Ltd; 2016. p. 449–456. https://doi.org/10.1016/B978-0-12-809324-5.00077-8.
  • Karadottir R, Attwell D. Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience. 2007;145(4):1426–1438.
  • Verkhratsky A, Steinhauser C. Ion channels in glial cells. Brain Res Brain Res Rev. 2000;32(2-3):380–412.
  • Gottlieb M, Matute C. Expression of ionotropic glutamate receptor subunits in glial cells of the hippocampal CA1 area following transient forebrain ischemia. J Cereb Blood Flow Metab. 1997;17(3):290–300.
  • Fernyhough P, Calcutt NA. Abnormal calcium homeostasis in peripheral neuropathies. Cell Calcium. 2010;47(2):130–139.
  • Leist M, Nicotera P. Calcium and neuronal death. Rev Physiol Biochem Pharmacol. 1998;132:79–125.
  • Verkhratsky A, Toescu EC. Endoplasmic reticulum Ca(2+) homeostasis and neuronal death. J Cell Mol Med. 2003;7(4):351–361.
  • Pivovarova NB, Andrews SB. Calcium-dependent mitochondrial function and dysfunction in neurons. Febs J. 2010;277(18):3622–3636.
  • Duchen MR. Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflugers Arch. 2012;464(1):111–121.
  • Li S, Stys PK. Na(+)-K(+)-ATPase inhibition and depolarization induce glutamate release via reverse Na(+)-dependent transport in spinal cord white matter. Neuroscience. 2001;107(4):675–683.
  • Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med. 2004;25(4):365–451.
  • Starkov AA, Chinopoulos C, Fiskum G. Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium. 2004;36(3-4):257–264.
  • Regan RF, Choi DW. Glutamate neurotoxicity in spinal cord cell culture. Neuroscience. 1991;43(2-3):585–591.
  • Robertson JD, Orrenius S, Zhivotovsky B. Review: nuclear events in apoptosis. J Struct Biol. 2000;129(2-3):346–358.
  • Ekshyyan O, Aw TY. Apoptosis in acute and chronic neurological disorders. Front Biosci. 2004;9:1567–1576.
  • Bains M, Hall ED. Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta. 2012;1822(5):675–684.
  • Springer JE, Azbill RD, Mark RJ, et al. 4-hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake. J Neurochem. 1997;68(6):2469–2476.
  • Hall ED. Antioxidant therapies for acute spinal cord injury. Neurotherapeutics. 2011;8(2):152–167.
  • Hall ED. Chapter 6: The contributing role of lipid peroxidation and protein oxidation in the course of CNS injury neurodegeneration and neuroprotection: an overview. In: Kobeissy FH, editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton, FL: CRC Press; Taylor & Francis; 2015. PMID: 26269884
  • Gorman AM, Ceccatelli S, Orrenius S. Role of Mitochondria in Neuronal Apoptosis. Dev Neurosci. 2000;22(5-6):348–358.
  • Cuzzocrea S, Riley DP, Caputi AP, et al. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev. 2001;53:135–159. PMID: 11171943
  • D’Errico M, Parlanti E, Dogliotti E. Mechanism of oxidative DNA damage repair and relevance to human pathology. Mutat Res. 2008; 659(1-2):4–14.
  • Jeppesen DK, Bohr VA, Stevnsner T. DNA repair deficiency in neurodegeneration. Prog Neurobiol. 2011;94(2):166–200.
  • Chen J, Jin K, Chen M, et al. Early detection of DNA strand breaks in the brain after transient focal ischemia: implications for the role of DNA damage in apoptosis and neuronal cell death. J Neurochem. 1997;69(1):232–245.
  • Vodicka P, Kumar R, Stetina R, et al. Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single-strand breaks in DNA. Carcinogenesis. 2004;25(5):757–763.
  • Manini P, De Palma G, Andreoli R, et al. Biomarkers of nucleic acid oxidation, polymorphism in, and expression of, hOGG1 gene in styrene-exposed workers. Toxicol. Lett. 2009;190(1):41–47.
  • Ohno M, Sakumi K, Fukumura R, et al. 8-oxoguanine causes spontaneous de novo germline mutations in mice. Sci Rep. 2014;4:4689
  • Dizdaroglu M. Oxidatively induced DNA damage and its repair in cancer. Mutat Res Rev Mutat Res. 2015;763:212–245.
  • Williams MV, Wishnok JS, Tannenbaum SR. Covalent adducts arising from the decomposition products of lipid hydroperoxides in the presence of cytochrome C. Chem Res Toxicol. 2007;20(5):767–775.
  • Luxford C, Dean RT, Davies MJ. Induction of DNA damage by oxidised amino acids and proteins. Biogerontology. 2002;3(1-2):95–102.
  • Lan J, Li W, Zhang F, et al. Inducible repair of oxidative DNA lesions in the rat brain after transient focal ischemia and reperfusion. J Cereb Blood Flow Metab. 2003;23(11):1324–1339.
  • PâQues F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999;63(2):349–404. PMID: 10357855
  • Krejci L, Altmannova V, Spirek M, et al. Homologous recombination and its regulation. Nucleic Acids Res. 2012;40(13):5795–5818.
  • Radhakrishnan SK, Jette N, Lees-Miller SP. Non-homologous end joining: emerging themes and unanswered questions. DNA Repair (Amst)). 2014;17:2–8.
  • Mojumdar A, Sorenson K, Hohl M, et al. Nej1 Interacts with Mre11 to regulate tethering and Dna2 binding at DNA double-strand breaks. Cell Rep. 2019;28(6):1564–1573.e3.
  • McVey M, Lee SE. MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet. 2008;24(11):529–538.
  • Yu X, Gabriel A. Ku-dependent and Ku-independent end-joining pathways lead to chromosomal rearrangements during double-strand break repair in Saccharomyces cerevisiae. Genetics. 2003;163(3):843–856. PMID: 12663527
  • Ranjha L, Howard S, Cejka P. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma. 2018;127(2):187–214.
  • Larrea AA, Lujan SA, Kunkel TA. SnapShot: DNA mismatch repair. Cell. 2010;141(4):730.e1
  • Le May N, Egly JM, Coin F. True lies: the double life of the nucleotide excision repair factors in transcription and DNA repair. J Nucleic Acids. 2010; 2010:1.
  • Li P, Hu X, Gan Y, et al. Mechanistic insight into DNA damage and repair in ischemic stroke: exploiting the base excision repair pathway as a model of neuroprotection. Antioxid Redox Signal. 2011;14(10):1905–1918.
  • Narciso L, Parlanti E, Racaniello M, et al. The response to oxidative DNA damage in neurons: mechanisms and disease. Neural Plast. 2016; 2016:3619274
  • Fortini P, Pascucci B, Parlanti E, et al. The base excision repair: mechanisms and its relevance for cancer susceptibility. Biochimie. 2003;85(11):1053–1071.
  • Hegde ML, Hazra TK, Mitra S. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res. 2008;18(1):27–47.
  • Wilson DM, Bohr VA. The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair (Amst)). 2007;6(4):544–559.
  • Dizdaroglu M. Base-excision repair of oxidative DNA damage by DNA glycosylases. Mutat Res. 2005;591(1-2):45–59.
  • Huffman JL, Sundheim O, Tainer JA. DNA base damage recognition and removal: new twists and grooves. Mutat Res. 2005;577(1-2):55–76.
  • Stivers JT, Jiang YL. A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem Rev. 2003;103(7):2729–2759.
  • Demple B, Sung JS. Molecular and biological roles of Ape1 protein in mammalian base excision repair. DNA Repair (Amst)). 2005;4(12):1442–1449.
  • Wilson DM, Barsky D. The major human abasic endonuclease: formation, consequences and repair of abasic lesions in DNA. Mutat Res. 2001;485(4):283–307.(01)00063-5
  • Bennett RA, Wilson DM, 3rd, Wong D, et al. Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway. Proc Natl Acad Sci U S A. 1997;94(14):7166–7169.
  • Mol CD, Izumi T, Mitra S, et al. DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination [corrected]. Nature. 2000;403(6768):451–456. ]
  • Wiederhold L, Leppard JB, Kedar P, et al. AP endonuclease-independent DNA base excision repair in human cells. Mol Cell. 2004;15(2):209–220.
  • Weinfeld M, Mani RS, Abdou I, et al. Tidying up loose ends: The role of polynucleotide kinase/phosphatase in DNA strand break repair. Trends Biochem Sci. 2011;36(5):262–271.
  • Almeida KH, Sobol RW. A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst)). 2007;6(6):695–711.
  • Gryk MR, Marintchev A, Maciejewski MW, et al. Mapping of the interaction interface of DNA polymerase beta with XRC. Structure. 2002;10(12):1709–1720. C1.
  • Fan J, Wilson DMII. Protein-protein interactions and posttranslational modifications in mammalian base excision repair. Free Radic Biol Med. 2005;38(9):1121–1138.
  • Gary R, Ludwig DL, Cornelius HL, et al. The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. J Biol Chem. 1997;272(39):24522–24529.
  • Gary R, Kim K, Cornelius HL, et al. Proliferating cell nuclear antigen facilitates excision in long-patch base excision repair. J Biol Chem. 1999;274(7):4354–4363.
  • Caldecott KW. XRCC1 and DNA strand break repair. DNA Repair (Amst)). 2003;2(9):955–969.(03)00118-6
  • Leppard JB, Dong Z, Mackey ZB, et al. Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair. Mol Cell Biol. 2003;23(16):5919–5927.
  • Schreiber V, Ame JC, Dolle P, et al. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem. 2002;277(25):23028–23036.
  • Levin DS, McKenna AE, Motycka TA, et al. Interaction between PCNA and DNA ligase I is critical for joining of Okazaki fragments and long-patch base-excision repair. Curr Biol. 2000;10(15):919–922.
  • Kauppinen TM, Chan WY, Suh SW, et al. Direct phosphorylation and regulation of poly(ADP-ribose) polymerase-1 by extracellular signal-regulated kinases 1/2. Proc Natl Acad Sci U S A. 2006;103(18):7136–7141.
  • Pacher P, Szabo C. Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am J Pathol. 2008;173(1):2–13.
  • Wang S, Xing Z, Vosler PS, et al. Cellular NAD replenishment confers marked neuroprotection against ischemic cell death: role of enhanced DNA repair. Stroke. 2008;39(9):2587–2595.
  • Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal. 2008;10(2):179–206.
  • Cho BB, Toledo-Pereyra LH. Caspase-independent programmed cell death following ischemic stroke. J Invest Surg. 2008;21(3):141–147.
  • Beneke S. Poly(ADP-ribose) polymerase activity in different pathologies-the link to inflammation and infarction. Exp Gerontol. 2008;43(7):605–614.
  • Moubarak RS, Yuste VJ, Artus C, et al. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol. 2007;27(13):4844–4862.
  • Martin LJ, Chang Q. DNA damage response and repair, DNA methylation, and cell death in human neurons and experimental animal neurons are different. J Neuropathol Exp Neurol. 2018;77(7):636–655.
  • Hammond EM, Denko NC, Dorie MJ, et al. Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol. 2002;22(6):1834–43.1843. 2002
  • Hammond EM, Dorie MJ, Giaccia AJ. ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. J Biol Chem. 2003;278(14):12207–12213.
  • Culmsee C, Mattson MP. P53 in neuronal apoptosis. Biochem Biophys Res Commun. 2005;331(3):761–777.
  • Liu T, Wang F, LePochat P, et al. Cofilin-mediated neuronal apoptosis via p53 translocation and PLD1 regulation. Sci Rep. 2017;7(1):11532
  • Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 2003;3(5):421–429.(03)00110-7
  • Dai Y, Grant S. New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin Cancer Res. 2010;16(2):376–383.
  • de Lange J, Verlaan-de Vries M, Teunisse A, et al. Chk2 mediates RITA-induced apoptosis. Cell Death Differ. 2012;19(6):980–989.
  • Tounai H, Hayakawa N, Kato H, et al. Immunohistochemical study on distribution of NF-kappaB and p53 in gerbil hippocampus after transient cerebral ischemia: effect of pitavastatin. Metab Brain Dis. 2007;22(1):89–104.
  • Yonekura I, Takai K, Asai A, et al. P53 potentiates hippocampal neuronal death caused by global ischemia. J Cereb Blood Flow Metab. 2006;26(10):1332–1340.
  • O’Hagan HM, Ljungman M. Nuclear accumulation of p53 following inhibition of transcription is not due to diminished levels of MDM2. Oncogene. 2004;23(32):5505–5512.
  • Sechi G, Deledda MG, Bua G, et al. Reduced intravenous glutathione in the treatment of early Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry. 1996;20(7):1159–1170.(96)00103-0
  • Parkinson S. G. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med. 1993;328:176–183.
  • Hall ED, Springer JE. Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx. 2004;1(1):80–100.
  • Carroll RT, Galatsis P, Borosky S, et al. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol) inhibits peroxynitrite-mediated phenol nitration. Chem Res Toxicol. 2000;13(4):294–300.
  • Hall ED, Kupina NC, Althaus JS. Peroxynitrite scavengers for the acute treatment of traumatic brain injury. Annals NY Acad Sci. 1999;890(1 NEUROPROTECTI):462–468.
  • Chabrier PE, Auguet M, Spinnewyn B, et al. BN 80933, a dual inhibitor of neuronal nitric oxide synthase and lipid peroxidation: a promising neuroprotective strategy. Proc Natl Acad Sci U S A. 1999;96(19):10824–10829.
  • Tonai T, Taketani Y, Ohmoto Y, et al. Cyclooxygenase-2 induction in rat spinal cord injury mediated by proinflammatory tumor necrosis factor-alpha and interleukin-1. Adv Exp Med Biol. 2002;507:397–401.
  • Hains BC, Yucra JA, Hulsebosch CE. Reduction of pathological and behavioral deficits following spinal cord contusion injury with the selective cyclooxygenase-2 inhibitor NS-398. J Neurotrauma. 2001;18(4):409–423.
  • He KY, Yang SZ, Shen DH, et al. Excision repair cross-complementing 1 expression protects against ischemic injury following middle cerebral artery occlusion in the rat brain. Gene Ther. 2009;16(7):840–848.
  • Kim HW, Cho KJ, Lee BI, et al. Post-ischemic administration of peptide with apurinic/apyrimidinic endonuclease activity inhibits induction of cell death after focal cerebral ischemia/reperfusion in mice. Neurosci Lett. 2009a;460(2):166–169.
  • Stetler RA, Gao Y, Zukin RS, et al. Apurinic/apyrimidinic endonuclease APE1 is required for PACAP-induced neuroprotection against global cerebral ischemia. Proc Natl Acad Sci U S A. 2010;107(7):3204–3209.
  • Kim HW, Cho KJ, Park SC, et al. The adenoviral vector-mediated increase in apurinic/apyrimidinic endonuclease inhibits the induction of neuronal cell death after transient ischemic stroke in mice. Brain Res. 2009b;1274:1–10.
  • He M, Xing S, Yang B, et al. Ebselen attenuates oxidative DNA damage and enhances its repair activity in the thalamus after focal cortical infarction in hypertensive rats. Brain Res. 2007;1181:83–92.
  • Culmsee C, Zhu X, Yu QS, et al. A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide. J Neurochem. 2001;77(1):220–228.
  • Leker RR, Aharonowiz M, Greig NH, et al. The role of p53-induced apoptosis in cerebral ischemia: effects of the p53 inhibitor pifithrin alpha. Exp Neurol. 2004;187(2):478–486.
  • Colón JM, Torrado AI, Cajigas Á, et al. Tamoxifen administration immediately or 24 hours after spinal cord injury improves locomotor recovery and reduces secondary damage in female rats. J Neurotrauma. 2016;33(18):1696–1708.
  • Caglar YS, Demirel A, Dogan I, et al. Effect of riluzole on spinal cord regeneration with hemisection method before injury. World Neurosurg. 2018;114:e247-53–e253.
  • Dai W, Wang X, Teng H, et al. Celastrol inhibits microglial pyroptosis and attenuates inflammatory reaction in acute spinal cord injury rats. Int Immunopharmacol. 2019;66:215–223.
  • de la Torre Valdovinos B, Duenas Jimenez JM, Estrada IJ, et al. Tamoxifen promotes axonal preservation and gait locomotion recovery after spinal cord injury in cats. J Vet Med. 2016; 2016:9561968
  • Kwon BK, Roy J, Lee JH, et al. Magnesium chloride in a polyethylene glycol formulation as a neuroprotective therapy for acute spinal cord injury: preclinical refinement and optimization. J Neurotrauma. 2009;26(8):1379–1393.
  • Borgens RB, Shi R. Immediate recovery from spinal cord injury through molecular repair of nerve membranes with polyethylene glycol. Faseb J. 2000;14(1):27–35.
  • Fehlings MG, Theodore N, Harrop J, et al. A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma. 2011;28(5):787–796.
  • Bowers CA, Kundu B, Rosenbluth J, et al. Patients with spinal cord injuries favor administration of methylprednisolone. PLoS One. 2016;11(1):e0145991.
  • Lu GB, Niu FW, Zhang YC, et al. Methylprednisolone promotes recovery of neurological function after spinal cord injury: association with Wnt/β-catenin signaling pathway activation. Neural Regen Res. 2016;11(11):1816–1823.
  • Lang-Lazdunski L, Heurteaux C, Vaillant N, et al. Riluzole prevents ischemic spinal cord injury caused by aortic crossclamping. J Thorac Cardiovasc Surg. 1999;117(5):881–889.
  • Lord-Fontaine S, Yang F, Diep Q, et al. Local inhibition of Rho signaling by cell-permeable recombinant protein BA-210 prevents secondary damage and promotes functional recovery following acute spinal cord injury. J Neurotrauma. 2008;25(11):1309–1322.
  • Zhou YJ, Liu JM, Wei SM, et al. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation. Neural Regen Res. 2015;10(8):1305–1311.
  • Trott A, West JD, Klaić L, et al. Activation of heat shock and antioxidant responses by the natural product celastrol: Transcriptional signatures of a thiol-targeted molecule. Mol Biol Cell. 2008;19(3):1104–1112.
  • Turturici G, Sconzo G, Geraci F. Hsp70 and its molecular role in nervous system diseases. Biochem Res Int. 2011; 2011:618127
  • Lois C, Alvarez-Buylla A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A. 1993;90(5):2074–2077.
  • Uchida N, Buck DW, He D, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000;97(26):14720–14725.
  • Alves-Sampaio A, García-Rama C, Collazos-Castro JE. Biofunctionalized PEDOT-coated microfibers for the treatment of spinal cord injury. Biomaterials. 2016;89:98–113.
  • Vats A, Bielby RC, Tolley NS, et al. Stem cells. Lancet. 2005;366(9485):592–602.
  • Foroni C, Galli R, Cipelletti B, et al. Resilience to transformation and inherent genetic and functional stability of adult neural stem cells ex vivo. Cancer Res. 2007;67(8):3725–3733.
  • Bui TV, Stifani N, Akay T, et al. Spinal microcircuits comprising dI3 interneurons are necessary for motor functional recovery following spinal cord transection. Elife. 2016;5:e21715. pii:
  • Crane DA, Hoffman JM, Reyes MR. Benefits of an exercise wellness program after spinal cord injury. J Spinal Cord Med. 2017;40(2):154–158.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.