478
Views
3
CrossRef citations to date
0
Altmetric
Review Article

A reappraisal on amyloid cascade hypothesis: the role of chronic infection in Alzheimer’s disease

ORCID Icon & ORCID Icon
Pages 1071-1089 | Received 01 Sep 2020, Accepted 09 Feb 2022, Published online: 14 Mar 2022

References

  • Mayeux R, Stern Y. Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med 2. 2012;2(8):a006239.
  • Sajjad R, Arif R, Shah AA, et al. Pathogenesis of Alzheimer’s disease: role of amyloid-beta and hyperphosphorylated tau protein. Pharm. Sci. 2018;80(4):581–591.
  • Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C. Molecular pathogenesis of Alzheimer’s disease: an update. Ann Neurosci. 2017;24(1):46–54.
  • Bature F, Guinn B-A, Pang D, et al. Signs and symptoms preceding the diagnosis of Alzheimer’s disease: a systematic scoping review of literature from 1937 to 2016. BMJ Open. 2017;7(8):e015746.
  • Devanand DP. Viral hypothesis and antiviral treatment in Alzheimer’s disease. Curr Neurol Neurosci Rep. 2018;18(9):55.
  • Pisa D, Alonso R, Fernández-Fernández AM, et al. Polymicrobial infections in brain tissue from Alzheimer’s disease patients. Sci Rep. 2017;7(1):5559.
  • Fulop T, Witkowski JM, Bourgade K, et al. Can an infection hypothesis explain the beta amyloid hypothesis of Alzheimer’s Disease? Front Aging Neurosci. 2018;10:224.
  • Sochocka M, Sobczyński M, Sender-Janeczek A, et al. Association between periodontal health status and cognitive abilities. The role of cytokine profile and systemic inflammation. CAR. 2017;14(9):978–990.
  • Kocahan S, Doğan Z . Mechanisms of Alzheimer’s disease pathogenesis and prevention: the brain, neural pathology, n-methyl-d-aspartate receptors, tau protein and other risk factors. Clin Psychopharmacol Neurosci. 2017;15(1):1–8.
  • Kowalski K, Mulak A. Brain-gut-microbiota axis in Alzheimer’s disease. J Neurogastroenterol Motil. 2019;25(1):48–60.
  • Amon P, Sanderson I. What is the microbiome? Arch Dis Child Educ Pract Ed. 2017;102(5):257–260.
  • Jiang C, Li G, Huang P, et al. The gut microbiota and Alzheimer’s disease. J Alzheimers Dis. 2017;58(1):1–15.
  • Cani PD. Human gut microbiome: hopes, threats and promises. Gut. 2018;67(9):1716–1725.
  • Carabotti M, Scirocco A, Maselli MA, et al. The gut-brain axis: interactions between enteric microbiota, Central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–209.
  • Bravo JA, Forsythe P, Chew MV, et al. Ingestion of lactobacillus strain regulates emotional behavior and Central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–16055.
  • Erny D, Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965–977.
  • Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014;20(5):779–786.
  • Shi H, Wang Q, Zheng M, et al. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J Neuroinflammation. 2020;17(1):77.
  • Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the Microbiota-Gut-Brain axis. Front Neurosci. 2018;12:49.
  • Farzi A, Fröhlich EE, Holzer P. Gut microbiota and the neuroendocrine system. Neurotherapeutics. 2018;15(1):5–22.
  • Alonso R, Pisa D, Fernández-Fernández AM, et al. Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer’s Disease. Front Aging Neurosci. 2018;10:159.
  • Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158.
  • Shen L, Liu L, Ji H-F . Alzheimer’s disease histological and behavioral manifestations in transgenic mice correlate with specific gut microbiome state. J Alzheimers Dis. 2017;56(1):385–390.
  • Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep. 2017;7(1):13537.
  • Wu S-C, Cao Z-S, Chang K-M, et al . Intestinal microbial dysbiosis aggravates the progression of Alzheimer’s disease in Drosophila. Nat Commun. 2017;8(1):24.
  • Chen C, Ahn EH, Kang SS, et al. Gut dysbiosis contributes to amyloid pathology, associated with C/EBPβ/AEP signaling activation in Alzheimer’s disease mouse model. Sci Adv. 2020;6:eaba0466.
  • Kim M-S, Kim Y, Choi H, et al . Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut. 2020;69(2):283–294.
  • Dando SJ, Mackay-Sim A, Norton R, et al. Pathogens penetrating the Central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev. 2014;27(4):691–726.
  • Santiago-Tirado FH, Doering TL. False friends: phagocytes as trojan horses in microbial brain infections. PLoS Pathog. 2017;13(12):e1006680.
  • Banks WA, Gray AM, Erickson MA, et al. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J Neuroinflammation. 2015;12:223.
  • Kumar DKV, Choi SH, Washicosky KJ, et al . Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med. 2016;8(340):340ra72.
  • White MR, Kandel R, Tripathi S, et al . Alzheimer’s associated β-amyloid protein inhibits influenza A virus and modulates viral interactions with phagocytes. PLoS One. 2014;9(7):e101364.
  • Cairns DM, Rouleau N, Parker RN, et al. A 3D human brain-like tissue model of herpes-induced Alzheimer’s disease. Sci Adv. 2020;6(19):eaay8828.
  • Ries M, Sastre M. Mechanisms of Aβ clearance and degradation by glial cells. Front Aging Neurosci. 2016;8:160.
  • Zhong L, Wang Z, Wang D, et al. Amyloid-beta modulates microglial responses by binding to the triggering receptor expressed on myeloid cells 2 (TREM2). Mol Neurodegener. 2018;13(1):15.
  • González-Reyes RE, Nava-Mesa MO, Vargas-Sánchez K, et al. Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front Mol Neurosci. 2017;10:427.
  • Riviere GR, Riviere KH, Smith KS. Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer’s disease. Oral Microbiol. Immunol. 2002;17(2):113–118.
  • Mann DMA, Tucker CM, Yates PO. Alzheimer’s disease: an olfactory connection? Mech Ageing Dev. 1988;42(1):1–15.
  • Leung JYK, Chapman JA, Harris JA, et al. Olfactory ensheathing cells are attracted to, and can endocytose, bacteria. Cell Mol Life Sci. 2008;65(17):2732–2739.
  • Musumeci T, Pellitteri R, Spatuzza M, et al. Nose-to-brain delivery: evaluation of polymeric nanoparticles on olfactory ensheathing cells uptake. J Pharm Sci. 2014;103(2):628–635.
  • Shoemark DK, Allen SJ. The microbiome and disease: reviewing the links between the oral microbiome, aging, and Alzheimer’s disease. J Alzheimers Dis. 2015;43(3):725–738.
  • Chen C-K, Wu Y-T, Chang Y-C . Association between chronic periodontitis and the risk of Alzheimer’s disease: a retrospective, population-based, matched-cohort study. Alzheimers Res Ther. 2017;9(1):56.
  • Tzeng N-S, Chung C-H, Yeh C-B, et al. Are chronic periodontitis and gingivitis associated with dementia? A nationwide, retrospective, Matched-Cohort study in Taiwan. Neuroepidemiology. 2016;47(2):82–93.
  • Chen J, Ren C-J, Wu L, et al. Tooth loss is associated with increased risk of dementia and with a Dose-Response Relationship. Front Aging Neurosci. 2018;10:415.
  • Nascimento PC, Castro MML, Magno MB, et al. Association between periodontitis and cognitive impairment in adults: a systematic review. Front Neurol. 2019;10:323.
  • Flemmig TF. Periodontitis. Ann Periodontol. 1999;4(1):32–38.
  • Ilievski V, Zuchowska PK, Green SJ, et al. Chronic oral application of a periodontal pathogen results in brain inflammation, neurodegeneration and amyloid beta production in wild type mice. PLoS One. 2018;13(10):e0204941.
  • Hu Y, Li H, Zhang J, et al. Periodontitis induced by P. gingivalis-LPS is associated with neuroinflammation and learning and memory impairment in Sprague-Dawley rats. Front Neurosci. 2020;14:658.
  • Zhang J, Yu C, Zhang X, et al. Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice. J Neuroinflammation. 2018;15(1):37.
  • Kamer AR, Pushalkar S, Gulivindala D, et al. 2021. Periodontal dysbiosis associates with reduced CSF Aβ42 in cognitively normal elderly. Alzheimer’s Dement. 13:e12172.
  • Narengaowa Kong W, Lan F, Awan UF, et al. The oral-gut-brain AXIS: the influence of microbes in Alzheimer’s disease. Front. Cell. Neurosci. 2021;15:633735.
  • Kobayashi R, Ogawa Y, Hashizume-Takizawa T, et al. Oral bacteria affect the gut microbiome and intestinal immunity. Pathog Dis. 2020;78(3):ftaa024.
  • Feng Y-K, Wu Q-L, Peng Y-W, et al. Oral P. gingivalis impairs gut permeability and mediates immune responses associated with neurodegeneration in LRRK2 R1441G mice. J Neuroinflammation. 2020;17(1):347.
  • Engelman A, Cherepanov P. The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol. 2012;10(4):279–290.
  • Siliciano RF, Greene WC. HIV latency. Cold Spring Harb Perspect Med. 2011;1(1):a007096.
  • Bhatti AB, Usman M, Kandi V. Current scenario of HIV/AIDS, treatment options, and major challenges with compliance to antiretroviral Therapy. Cureus. 2016;8(3):e515.
  • Ganser-Pornillos BK, Yeager M, Sundquist WI. The structural biology of HIV assembly. Curr Opin Struct Biol. 2008;18(2):203–217.
  • Turner BG, Summers MF. Structural biology of HIV. J Mol Biol. 1999;285(1):1–32.
  • Saylor D, Dickens AM, Sacktor N, et al. HIV-associated neurocognitive disorder-pathogenesis and prospects for treatment. Nat Rev Neurol. 2016;12(4):234–248.
  • Scutari R, Alteri C, Perno C, et al. The role of HIV infection in neurologic injury. Brain Sci. 2017;7(12):38.
  • Antinori A, Arendt G, Becker JT, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–1799.
  • Valcour V, Chalermchai T, Sailasuta N, RV254/SEARCH 010 Study Group, et al. Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis. 2012;206(2):275–282.
  • Williams DW, Anastos K, Morgello S, et al. JAM-A AND ALCAM are therapeutic targets to inhibit diapedesis across the BBB of CD14+CD16+ monocytes in HIV-infected individuals. J Leukoc Biol. 2015;97(2):401–412.
  • Williams DW, Eugenin EA, Calderon TM, et al. Monocyte maturation, HIV susceptibility, and transmigration across the blood brain barrier are critical in HIV neuropathogenesis. J Leukoc Biol. 2012;91(3):401–415.
  • Veenstra M, León-Rivera R, Li M, et al. Mechanisms of CNS viral seeding by HIV + CD14+ CD16+ monocytes: establishment and reseeding of viral reservoirs contributing to HIV-Associated neurocognitive disorders. mBio. 2017a;8(5):e01280–17.
  • Veenstra M, Williams DW, Calderon TM, et al. Frontline science: CXCR7 mediates CD14 + CD16+ monocyte transmigration across the blood brain barrier: a potential therapeutic target for NeuroAIDS. J Leukoc Biol. 2017b;102(5):1173–1185.
  • Williams DW, Byrd D, Rubin LH, et al. CCR2 on CD14(+)CD16(+) monocytes is a biomarker of HIV-associated neurocognitive disorders. Neurol Neuroimmunol Neuroinflamm. 2014;1(3):e36.
  • Anesten B, Yilmaz A, Hagberg L, et al. Blood-brain barrier integrity, intrathecal immunoactivation, and neuronal injury in HIV. Neurol Neuroimmunol Neuroinflamm. 2016;3(6):e300.
  • Anthony IC, Ramage SN, Carnie FW, et al. Accelerated tau deposition in the brains of individuals infected with human immunodeficiency virus-1 before and after the advent of highly active anti-retroviral therapy. Acta Neuropathol. 2006;111(6):529–538.
  • Cho Y-E, Lee M-H, Song B-J. Neuronal cell death and degeneration through increased nitroxidative stress and tau phosphorylation in HIV-1 transgenic rats. PLoS One. 2017;12(1):e0169945.
  • Kim J, Yoon J-H, Kim Y-S. HIV-1 tat interacts with and regulates the localization and processing of amyloid precursor protein. PLoS One. 2013;8(11):e77972.
  • Chen Y, Huang W, Jiang W, et al. HIV-1 tat regulates occludin and Aβ transfer receptor expression in brain endothelial cells via Rho/ROCK signaling pathway. Oxid Med Cell Longev. 2016;2016:4196572–4196579.
  • Jiang W, Huang W, Chen Y, et al. HIV-1 transactivator protein induces ZO-1 and neprilysin dysfunction in brain endothelial cells via the ras signaling pathway. Oxid Med Cell Longev. 2017;2017:3160360.
  • Bae M, Patel N, Xu H, et al. Activation of TRPML1 clears intraneuronal Aβ in preclinical models of HIV infection. J Neurosci. 2014;34(34):11485–11503.
  • Zou M, Huang W, Jiang W, et al. Role of cav-1 in HIV-1 Tat-Induced dysfunction of tight junctions and Aβ-Transferring Proteins. Oxid Med Cell Longev. 2019;2019:3403206–3403208.
  • Heaton RK, Franklin DR, Ellis RJ, HNRC Group, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol. 2011;17(1):3–16.
  • Kelly CM, van Oosterhout JJ, Ngwalo C, et al. HIV associated neurocognitive disorders (HAND) in malawian adults and effect on adherence to combination anti-Retroviral therapy: a cross sectional study. PLoS One. 2014;9(6):e98962.
  • Ances BM, Clifford DB. HIV-associated neurocognitive disorders and the impact of combination antiretroviral therapies. Curr Neurol Neurosci Rep. 2008;8(6):455–461.
  • Kinai E, Komatsu K, Sakamoto M, for HIV-Associated Neurocognitive Disorders in Japanese (J-HAND study group), et al. Association of age and time of disease with HIV-associated neurocognitive disorders: a Japanese nationwide multicenter study. J Neurovirol. 2017;23(6):864–874.
  • Merlini E, Iannuzzi F, Calcagno A, et al. Peripheral and cerebrospinal fluid immune activation and inflammation in chronically HIV-infected patients before and after virally suppressive combination antiretroviral therapy (cART). J Neurovirol. 2018;24(6):679–694.
  • Canet G, Dias C, Gabelle A, et al. HIV neuroinfection and Alzheimer’s disease: similarities and potential links?. Front Cell Neurosci. 2018;12:307.
  • Milanini B, Valcour V. Differentiating HIV-Associated neurocognitive disorders from Alzheimer’s Disease: an Emerging Issue in Geriatric NeuroHIV. Curr HIV/AIDS Rep. 2017;14(4):123–132.
  • Pulliam L, Sun B, Mustapic M, et al. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease. J Neurovirol. 2019;25(5):702–709.
  • Brouillette M-J, Yuen T, Fellows LK, et al. Identifying neurocognitive decline at 36 months among HIV-Positive participants in the CHARTER cohort using Group-Based trajectory analysis. PLoS ONE. 2016;11(5):e0155766.
  • Sacktor N, Skolasky RL, Seaberg E, et al. Prevalence of HIV-associated neurocognitive disorders in the multicenter AIDS cohort study. Neurology. 2016;86(4):334–340.
  • Mäkitalo S, Mellgren Å, Borgh E, et al . The cerebrospinal fluid biomarker profile in an HIV-infected subject with Alzheimer’s disease. AIDS Res Ther. 2015;12:23.
  • Kumar SP, Chandy ML, Shanavas M, et al. Pathogenesis and life cycle of herpes simplex virus infection-stages of primary, latency and recurrence. J Oral Maxillofac Surg Med Pathol. 2016;28(4):350–353.
  • Fatahzadeh M, Schwartz RA. Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J Am Acad Dermatol. 2007;57(5):737–763.
  • Kukhanova MK, Korovina AN, Kochetkov SN. Human herpes simplex virus: life cycle and development of inhibitors. Biochemistry (Mosc). 2014;79(13):1635–1652.
  • Pilling A, Rosenberg MF, Willis SH, et al. Three-dimensional structure of herpes simplex virus type 1 glycoprotein D at 2.4-nanometer resolution. J Virol. 1999;73(9):7830–7834.
  • Mustafa M, Illzam E, Muniandy R, et al. Herpes simplex virus infections, pathophysiology and management. IOSR. 2016;15(07):85–91.
  • Dauber B, Saffran HA, Smiley JR. The herpes simplex virus 1 virion host shutoff protein enhances translation of viral late mRNAs by preventing mRNA overload. J Virol. 2014;88(17):9624–9632.
  • Sadek J, Read GS. The splicing history of an mRNA affects its level of translation and sensitivity to cleavage by the virion host shutoff endonuclease during herpes simplex virus infections. J Virol. 2016;90(23):10844–10856.
  • Melchjorsen J, Matikainen S, Paludan SR. Activation and evasion of innate antiviral immunity by herpes simplex virus. Viruses. 2009;1(3):737–759.
  • Nicoll MP, Proença JT, Efstathiou S. The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev. 2012;36(3):684–705.
  • Piacentini R, De Chiara G, Li Puma DD, et al . HSV-1 and Alzheimer’s disease: more than a hypothesis. Front Pharmacol. 2014;5:97.
  • Safieh M, Korczyn AD, Michaelson DM . ApoE4: an emerging therapeutic target for Alzheimer’s disease. BMC Med. 2019;17(1):64.
  • Itzhaki RF, Lin WR, Shang D, et al. Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet. 1997;349(9047):241–244.
  • De Chiara G, Marcocci ME, Civitelli L, et al. APP processing induced by herpes simplex virus type 1 (HSV-1) yields several APP fragments in human and rat neuronal cells. PLoS One. 2010;5(11):e13989.
  • Wozniak MA, Frost AL, Itzhaki RF. Alzheimer’s disease-specific tau phosphorylation is induced by herpes simplex virus type 1. J Alzheimers Dis. 2009;16(2):341–350.
  • Itzhaki RF. Corroboration of a major role for herpes simplex virus type 1 in alzheimer’s disease. Front. Aging Neurosci. 2018 Oct 19;10(324).doi:10.3389/fnagi.2018.00324.
  • Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, et al . Alzheimer’s disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron. 2018;99(1):56–63.e3.
  • De Chiara G, Racaniello M, Mollinari C, et al. Herpes simplex Virus-Type1 (HSV-1) impairs DNA repair in cortical Neurons. Front Aging Neurosci. 2016;8:242.
  • Alvarez G, Aldudo J, Alonso M, et al. Herpes simplex virus type 1 induces nuclear accumulation of hyperphosphorylated tau in neuronal cells. J Neurosci Res. 2012;90(5):1020–1029.
  • Civitelli L, Marcocci ME, Celestino I, et al . Herpes simplex virus type 1 infection in neurons leads to production and nuclear localization of APP intracellular domain (AICD): implications for Alzheimer’s disease pathogenesis. J Neurovirol. 2015;21(5):480–490.
  • Bourgade K, Le Page A, Bocti C, et al. Protective effect of amyloid-β peptides against herpes simplex virus-1 infection in a neuronal cell culture Model. J Alzheimers Dis. 2016;50(4):1227–1241.
  • Cohen C, Corpet A, Roubille S, et al. Promyelocytic leukemia (PML) nuclear bodies (NBs) induce latent/quiescent HSV-1 genomes chromatinization through a PML NB/histone H3.3/H3.3 chaperone axis. PLoS Pathog. 2018;14(9):e1007313.
  • Maroui MA, Callé A, Cohen C, et al. Latency entry of herpes simplex virus 1 is determined by the interaction of its genome with the nuclear Environment. PLoS Pathog. 2016;12(9):e1005834.
  • Jamieson GA, Maitland NJ, Wilcock GK, et al. Herpes simplex virus type 1 DNA is present in specific regions of brain from aged people with and without senile dementia of the Alzheimer type. J Pathol. 1992;167(4):365–368.
  • Jamieson GA, Maitland NJ, Craske J, et al . Detection of herpes simplex virus type 1 DNA sequences in normal and Alzheimer’s disease brain using polymerase chain reaction. Biochem Soc Trans. 1991;19(2):122S.
  • Hogestyn JM, Mock DJ, Mayer-Proschel M. Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology. Neural Regen Res. 2018;13(2):211–221.
  • Corder E, Lannfelt L, Mulder M. Apolipoprotein E and herpes simplex virus 1 in Alzheimer’s disease. Lancet. 1998;352(9136):1312–1313.
  • Itzhaki RF . Herpes simplex virus type 1 and Alzheimer’s disease: increasing evidence for a major role of the virus. Front Aging Neurosci. 2014;6:202.
  • Lin W-R, Shang D, Wilcock GK, et al. Alzheimer’s disease, herpes simplex virus type 1, cold sores and apolipoprotein E4. Biochem Soc Trans. 1995;23(4):594S.
  • Tanaka S, Nagashima H . Establishment of an Alzheimer’s disease model with latent herpesvirus infection using PS2 and Tg2576 double transgenic mice. Exp Anim. 2018;67(2):185–192.
  • De Chiara G, Piacentini R, Fabiani M, et al. Recurrent herpes simplex virus-1 infection induces hallmarks of neurodegeneration and cognitive deficits in mice. PLoS Pathog. 2019;15(3):e1007617.
  • Bachmann NL, Polkinghorne A, Timms P. Chlamydia genomics: providing novel insights into chlamydial biology. Trends Microbiol. 2014;22(8):464–472.
  • Elwell C, Mirrashidi K, Engel J. Chlamydia cell biology and pathogenesis. Nat Rev Microbiol. 2016;14(6):385–400.
  • Grayston JT. Background and current knowledge of Chlamydia pneumoniae and atherosclerosis. J Infect Dis. 2000;181(Suppl 3):S402–S410.
  • Contini C, Seraceni S, Cultrera R, et al. Chlamydophila pneumoniae infection and its role in neurological disorders. Interdiscip Perspect Infect Dis. 2010;2010:273573.
  • Balin BJ, Hammond CJ, Little CS, et al. Chlamydia pneumoniae: an etiologic agent for Late-Onset dementia. Front Aging Neurosci. 2018;10:302.
  • Porritt RA, Crother TR. Chlamydia pneumoniae infection and inflammatory diseases. For Immunopathol Dis Therap. 2016;7(3–4):237–254.
  • Campbell LA, Kuo C. Chlamydia pneumoniae-an infectious risk factor for atherosclerosis? Nat Rev Microbiol. 2004;2(1):23–32.
  • Balin BJ, Gérard HC, Arking EJ, et al. Identification and localization of Chlamydia pneumoniae in the Alzheimer’s brain. Med Microbiol Immunol. 1998;187(1):23–42.
  • Hammond CJ, Hallock LR, Howanski RJ, et al . Immunohistological detection of Chlamydia pneumoniae in the Alzheimer’s disease brain. BMC Neurosci. 2010;11:121.
  • Itzhaki RF, Wozniak MA, Appelt DM, et al. Infiltration of the brain by pathogens causes Alzheimer’s disease. Neurobiol Aging. 2004;25(5):619–627.
  • Shima K, Kuhlenbäumer G, Rupp J. Chlamydia pneumoniae infection and Alzheimer’s disease: a connection to remember? Med Microbiol Immunol. 2010;199(4):283–289.
  • Higashijima M. Clinical study of respiratory function and difference in pneumonia history between Alzheimer’s Disease and Vascular Dementia Groups. J Phys Ther Sci. 2014;26(7):1113–1114.
  • Lampela P, Tolppanen A-M, Tanskanen A, et al. Use of antidementia drugs and risk of pneumonia in older persons with Alzheimer’s disease. Ann Med. 2017;49(3):230–239.
  • MacIntyre A, Abramov R, Hammond CJ, et al. Chlamydia pneumoniae infection promotes the transmigration of monocytes through human brain endothelial cells. J Neurosci Res. 2003;71(5):740–750.
  • Little CS, Joyce TA, Hammond CJ, et al. Detection of bacterial antigens and Alzheimer’s disease-like pathology in the central nervous system of BALB/c mice following intranasal infection with a laboratory isolate of Chlamydia pneumoniae. Front Aging Neurosci. 2014;6:304.
  • Zelaya MV, Pérez-Valderrama E, de Morentin XM, et al. Olfactory bulb proteome dynamics during the progression of sporadic Alzheimer’s disease: identification of common and distinct olfactory targets across Alzheimer-related co-pathologies. Oncotarget. 2015;6(37):39437–56.
  • Gérard HC, Dreses-Werringloer U, Wildt KS, et al . Chlamydophila (Chlamydia) pneumoniae in the Alzheimer’s brain. FEMS Immunol Med Microbiol. 2006;48(3):355–366.
  • Little CS, Hammond CJ, MacIntyre A, et al. Chlamydia pneumoniae induces Alzheimer-like amyloid plaques in brains of BALB/c mice. Neurobiol Aging. 2004;25(4):419–429.
  • Lim C, Hammond CJ, Hingley ST, et al . Chlamydia pneumoniae infection of monocytes in vitro stimulates innate and adaptive immune responses relevant to those in Alzheimer’s disease. J Neuroinflammation. 2014;11:217.
  • Al-Atrache Z, Lopez DB, Hingley ST, et al. Astrocytes infected with Chlamydia pneumoniae demonstrate altered expression and activity of secretases involved in the generation of β-amyloid found in Alzheimer disease. BMC Neurosci. 2019;20(1):6.
  • Mäurer AP, Mehlitz A, Mollenkopf HJ, et al. Gene expression profiles of Chlamydophila pneumoniae during the developmental cycle and iron depletion-mediated persistence. PLoS Pathog. 2007;3(6):e83.
  • Faux NG, Rembach A, Wiley J, Ellis KA, Ames D, Fowler CJ, Martins RN, Pertile KK, Rumble RL, Trounson B, Masters CL; AIBL Research Group, Bush AI. An anemia of Alzheimer’s disease. Mol Psychiatry. 2014;19(11):1227–1234.
  • Motaleb MA, Liu J, Wooten RM. Spirochetal motility and chemotaxis in the natural enzootic cycle and development of lyme disease. Curr Opin Microbiol. 2015;28:106–113.
  • Wolgemuth CW. Flagellar motility of the pathogenic spirochetes. Semin Cell Dev Biol. 2015;46:104–112.
  • Tuddenham S, Ghanem KG. Neurosyphilis: knowledge gaps and controversies. Sex Transm Dis. 2018;45(3):147–151.
  • Gonzalez H, Koralnik IJ, Marra CM. Neurosyphilis. Semin Neurol. 2019;39(4):448–455.
  • Li W, Jiang M, Xu D, et al. Clinical and laboratory characteristics of symptomatic and asymptomatic neurosyphilis in HIV-Negative patients: a retrospective study of 264 cases. BioMed Res Int. 2019;2019:1–6.
  • Schwenkenbecher P, Pul R, Wurster U, et al. Common and uncommon neurological manifestations of neuroborreliosis leading to hospitalization. BMC Infect Dis. 2017;17(1):90.
  • Lamichhane J, Haider R, Bekkerman M, et al. A case of undetected neuroborreliosis in a 75-Year-Old chinese Male. Case Rep Infect Dis. 2018;2018:6764894.
  • Blanc F, Philippi N, Cretin B, et al. Lyme neuroborreliosis and dementia. J Alzheimers Dis. 2014;41(4):1087–1093.
  • Kristoferitsch W, Aboulenein-Djamshidian F, Jecel J, et al. Secondary dementia due to lyme neuroborreliosis. Wien Klin Wochenschr. 2018;130(15–16):468–478.
  • Topakian R, Artemian H, Metschitzer B, et al. Dramatic response to a 3-week course of ceftriaxone in late neuroborreliosis mimicking atypical dementia and normal pressure hydrocephalus. J Neurol Sci. 2016;366:146–148.
  • Allen HB. Alzheimer’s disease: a novel hypothesis for the development and the subsequent role of beta amyloid. J Neuroinfect Dis. 2016;7(2):1000211.
  • Miklossy J . Alzheimer’s disease - a neurospirochetosis. Analysis of the evidence following Koch’s and Hill’s criteria. J Neuroinflammation. 2011;8:90.
  • Shin OS. Insight into the pathogenesis of lyme disease. J Bacteriol Virol. 2014;44(1):10.
  • Di Domenico EG, Cavallo I, Bordignon V, et al. The emerging role of microbial biofilm in lyme Neuroborreliosis. Front Neurol. 2018;9:1048.
  • Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2. 2012;2(11):a012427–a012427.
  • Sapi E, Balasubramanian K, Poruri A, et al. Evidence of in vivo existence of borrelia biofilm in borrelial lymphocytomas. Eur J Microbiol Immunol (Bp). 2016;6(1):9–24.
  • Miklossy J. Bacterial amyloid and DNA are important constituents of senile plaques: further evidence of the spirochetal and biofilm nature of senile Plaques. J Alzheimers Dis. 2016;53(4):1459–1473.
  • Mehrabian S, Raycheva M, Traykova M, et al. Neurosyphilis with dementia and bilateral hippocampal atrophy on brain magnetic resonance imaging. BMC Neurol. 2012;12:96.
  • Mehrabian S, Raycheva MR, Petrova EP, et al. Neurosyphilis presenting with dementia, chronic chorioretinitis and adverse reactions to treatment: a case report. Cases J. 2009;2:8334.
  • Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119–128.
  • Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20(1):133–163.
  • McManus BA, Coleman DC. Molecular epidemiology, phylogeny and evolution of Candida albicans. Infect Genet Evol. 2014;21:166–178.
  • Tyc KM, Kühn C, Wilson D, et al. Assessing the advantage of morphological changes in Candida albicans: a game theoretical study. Front Microbiol. 2014;5:41.
  • Sudbery P, Gow N, Berman J. The distinct morphogenic states of Candida albicans. Trends Microbiol. 2004;12(7):317–324.
  • Tsui C, Kong EF, Jabra-Rizk MA. Pathogenesis of Candida albicans biofilm. Pathog Dis. 2016;74(4):ftw018.
  • Alonso R, Pisa D, Marina AI, et al. Evidence for fungal infection in cerebrospinal fluid and brain tissue from patients with amyotrophic lateral sclerosis. Int J Biol Sci. 2015;11(5):546–558.
  • Pisa D, Alonso R, Rábano A, et al. Different brain regions are infected with fungi in Alzheimer’s Disease. Sci Rep. 2015;5:15015.
  • Jong AY, Stins MF, Huang SH, et al. Traversal of Candida albicans across human blood-brain barrier in vitro. Infect Immun. 2001;69(7):4536–4544.
  • Liu Y, Mittal R, Solis NV, et al. Mechanisms of Candida albicans trafficking to the brain. PLoS Pathog. 2011;7(10):e1002305.
  • Wu W-K, Chen C-C, Panyod S, et al . Optimization of fecal sample processing for microbiome study - the journey from bathroom to bench. J Formos Med Assoc. 2019;118(2):545–555.
  • Minter MR, Zhang C, Leone V, et al . Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep. 2016;6:30028.
  • Minter MR, Hinterleitner R, Meisel M, et al . Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1ΔE9 murine model of Alzheimer’s disease. Sci Rep. 2017;7(1):10411.
  • Dodiya HB, Frith M, Sidebottom A, et al . Synergistic depletion of gut microbial consortia, but not individual antibiotics, reduces amyloidosis in APPPS1-21 Alzheimer’s transgenic mice. Sci Rep. 2020;10(1):8183.
  • Loeb MB, Molloy DW, Smieja M, et al . A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer’s disease. J Am Geriatr Soc. 2004;52(3):381–387.
  • Balducci C, Santamaria G, La Vitola P, et al . Doxycycline counteracts neuroinflammation restoring memory in Alzheimer’s disease mouse models. Neurobiol Aging. 2018;70:128–139.
  • Qosa H, Abuznait AH, Hill RA, et al. Enhanced brain amyloid-β clearance by rifampicin and caffeine as a possible protective mechanism against Alzheimer’s disease. JAD. 2012;31(1):151–165.
  • Dominy SS, Lynch C, Ermini F, et al . Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019;5(1):eaau3333.
  • Hui Z, Zhijun Y, Yushan Y, et al . The combination of acyclovir and dexamethasone protects against Alzheimer’s disease-related cognitive impairments in mice. Psychopharmacology (Berl). 2020;237(6):1851–1860.
  • Devanand DP, Andrews H, Kreisl WC, et al. Antiviral therapy: valacyclovir treatment of Alzheimer’s Disease (VALAD) Trial: protocol for a randomised, double-blind, placebo-controlled, treatment trial. BMJ Open. 2020;10(2):e032112.
  • Wozniak MA, Frost AL, Preston CM, et al. Antivirals reduce the formation of key Alzheimer’s disease molecules in cell cultures acutely infected with herpes simplex virus type 1. PLOS One. 2011;6(10):e25152.
  • Wozniak MA, Frost AL, Itzhaki RF . The helicase-primase inhibitor Bay 57-1293 reduces the Alzheimer’s disease-related molecules induced by herpes simplex virus type 1. Antiviral Res. 2013;99(3):401–404.
  • Kim KO, Gluck M. Fecal microbiota transplantation: an update on clinical Practice. Clin Endosc. 2019;52(2):137–143.
  • Khanna S, Vazquez-Baeza Y, González A, et al. Changes in microbial ecology after fecal microbiota transplantation for recurrent C. difficile infection affected by underlying inflammatory bowel disease. Microbiome. 2017;5(1):55.
  • Wang J, Li X, Wu X, et al. Fecal microbiota transplantation as an effective treatment for Carbapenem-Resistant Klebsiella pneumoniae infection in a renal transplant Patient. Infect Drug Resist. 2021;14:1805–1811.
  • Gouveia C, Palos C, Pereira P, et al. Fecal microbiota transplant in a patient infected with Multidrug-Resistant bacteria: a case Report. GE Port J Gastroenterol. 2020;28(1):56–61.
  • Vendrik KEW, Ooijevaar RE, de Jong PRC, et al. Fecal microbiota transplantation in neurological disorders. Front Cell Infect Microbiol. 2020;10:98.
  • Kang D-W, Adams JB, Gregory AC, et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 2017;5(1):10.
  • Kang D-W, Adams JB, Coleman DM, et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci Rep. 2019;9(1):5821.
  • Sun J, Xu J, Ling Y, et al. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry. 2019;9(1):13.
  • Hazan S . Rapid improvement in Alzheimer’s disease symptoms following fecal microbiota transplantation: a case report. J Int Med Res. 2020;48(6):300060520925930.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.