161
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Hydroxychloroquine attenuated motor impairment and oxidative stress in a rat 6-hydroxydopamine model of Parkinson’s disease

, , , , &
Pages 1252-1261 | Received 26 Jan 2022, Accepted 27 Apr 2022, Published online: 15 May 2022

References

  • Savica R, Grossardt BR, Bower JH, et al. Incidence of dementia with Lewy bodies and parkinson disease dementia. JAMA Neurol. 2013;70(11):1396–1402.
  • Balestrino R, Schapira A. Parkinson disease. Eur J Neurol. 2020;27(1):27–42.
  • Mazzio EA, Reams RR, Soliman K. The role of oxidative stress, impaired glycolysis and mitochondrial respiratory redox failure in the cytotoxic effects of 6-hydroxydopamine in vitro. Brain Res. 2004;1004(1–2):29–44.
  • Colpo GD, Ribeiro FM, Rocha NP, et al. Animal models for the study of human neurodegenerative diseases. In: Conn M, editor. Animal models for the study of human disease. Elsevier; 2017. p. 1109–1129. Cambridge (MA): Elsevier.
  • Duty S, Jenner P. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol. 2011;164(4):1357–1391.
  • Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912.
  • Adjene J, Adenowo T. Histological studies of the effects of chronic administration of chloroquine on the inferior colliculus of the adult wistar rat. J Med Biomed Res. 2009;4:83–87.
  • Hedya SA, Safar MM, Bahgat AK. Hydroxychloroquine antiparkinsonian potential: Nurr1 modulation versus autophagy inhibition. Behav Brain Res. 2019;365:82–88.
  • Kim C-H, Han B-S, Moon J, et al. Nuclear receptor Nurr1 agonists enhance its dual functions and improve behavioral deficits in an animal model of Parkinson’s disease. Proc Natl Acad Sci USA. 2015;112(28):8756–8761.
  • Sharma OP. Effectiveness of chloroquine and hydroxychloroquine in treating selected patients with sarcoidosis with neurological involvement. Arch Neurol. 1998;55(9):1248–1254.
  • Ye M, Wang X-J, Zhang Y-H, et al. Therapeutic effects of differentiated bone marrow stromal cell transplantation on rat models of Parkinson’s disease. Parkinsonism Relat Disord. 2007;13:44–49.
  • Carvalho MM, Campos FL, Marques M, et al. Effect of levodopa on reward and impulsivity in a rat model of Parkinson’s disease. Front Behav Neurosci. 2017;11:145.
  • Roghani M, Behzadi G, Baluchnejadmojarad T. Efficacy of elevated body swing test in the early model of Parkinson’s disease in rat. Physiol Behav. 2002;76(4-5):507–510.
  • Wei X, He S, Wang Z, et al. Fibroblast growth factor 1attenuates 6-hydroxydopamine-induced neurotoxicity: an in vitro and in vivo investigation in experimental models of Parkinson’s disease. Am J Transl Res. 2014;6:664–677.
  • Morpurgo C. Effects of antiparkinson drugs on a phenothiazine-induced catatonic reaction. Arch Int Pharmacodyn Ther. 1962;137:84–90.
  • Ozdemir E, Cetinkaya S, Ersan S, et al. Serum selenium and plasma malondialdehyde levels and antioxidant enzyme activities in patients with obsessive–compulsive disorder. Prog Neuro-Psychopharmacology Biol Psychiatry. 2009;33(1):62–65.
  • Jin F, Wu Q, Lu Y-F, et al. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. Eur J Pharmacol. 2008;600(1–3):78–82.
  • Paxinos G, Watson C. 2014. The rat brain in stereotaxic coordinates. 7th ed. Cambridge (MA): Elsevier.
  • Amano S, Kegelmeyer D, Hong SL. Rethinking energy in parkinsonian motor symptoms: a potential role for neural metabolic deficits. Front Syst Neurosci. 2014;8:242.
  • Prasad EM, Hung S-Y. Behavioral tests in Neurotoxin-Induced animal models of parkinson’s disease. Antioxidants. 2020;9(10):1007.
  • Jenner P. Molecular mechanisms of l-DOPA-induced dyskinesia. Nat Rev Neurosci. 2008;9(9):665–677.
  • Deumens R, Blokland A, Prickaerts J. Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol. 2002;175(2):303–317.
  • Jolicoeur FB, Rivest R, Drumheller A. Hypokinesia, rigidity, and tremor induced by hypothalamic 6-OHDA lesions in the rat. Brain Res Bull. 1991;26(2):317–320.
  • Glinka Y, Gassen M, Youdim M. Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl. 1997;50:55–66.
  • Varešlija D, Tipton KF, Davey GP, et al. 6-Hydroxydopamine: a far from simple neurotoxin. J Neural Transm (Vienna). 2020;127(2):213–230.
  • Carvalho MM, Campos FL, Coimbra B, et al. Behavioral characterization of the 6-hydroxidopamine model of parkinson’s disease and pharmacological rescuing of non-motor deficits. Mol Neurodegener. 2013;8:14.
  • Ma Y, Zhan M, OuYang L, et al. The effects of unilateral 6-OHDA lesion in medial forebrain bundle on the motor, cognitive dysfunctions and vulnerability of different striatal interneuron types in rats. Behav Brain Res. 2014;266:37–45.
  • Ziai SA, Niknami Z, Nasri S, et al. Protective effects of water extract of Morus nigra L. on 6-Hydroxydopamine induced Parkinson’s disease in male rats. Nov Biomed. 2018;6:43–50.
  • Song W, Muste JC, Greenlee TE, et al. Chloroquine and hydroxychloroquine toxicity. AJOCT. 2020;2:8.
  • Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis. 2013;3(4):461–491.
  • Filograna R, Beltramini M, Bubacco L, et al. Anti-oxidants in Parkinson’s disease therapy: a critical point of view. Curr Neuropharmacol. 2016;14(3):260–271.
  • Guo J, Zhao X, Li Y, et al. Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease (Review). Int J Mol Med. 2018;41(4):1817–1825.
  • Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol. 2003;53(Suppl 3):S26–S38.
  • Butler R, Morris AD, Belch JJ, et al. Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension. 2000;35(3):746–751.
  • Park H-A, Ellis AC. Dietary antioxidants and parkinson’s disease. Antioxidants. 2020;9(7):570.
  • Blum D, Torch S, Lambeng N, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in parkinson’s disease. Prog Neurobiol. 2001;65(2):135–172.(01)00003-X
  • Blandini F, Armentero M-T, Martignoni E. The 6-hydroxydopamine model: news from the past. Parkinsonism Relat Disord. 2008;14:S124–S129.
  • Haddadi R, Nayebi AM, Farajniya S, et al. Silymarin improved 6-OHDA-induced motor impairment in hemi-parkisonian rats: behavioral and molecular study. Daru. 2014;22:38.
  • Massari CM, Castro AA, Dal-Cim T, et al. In vitro 6-hydroxydopamine-induced toxicity in striatal, cerebrocortical and hippocampal slices is attenuated by atorvastatin and MK-801. Toxicol in Vitro. 2016;37:162–168.
  • Inden M, Abe M, Minamino H, et al. Effect of selective serotonin reuptake inhibitors via 5-HT1A receptors on L-DOPA-Induced rotational behavior in a hemiparkinsonian rat model. J Pharmacol Sci. 2012;119(1):10–19.
  • Olatunde Farombi E, Shyntum YY, Emerole GO. Influence of chloroquine treatment and Plasmodium falciparum malaria infection on some enzymatic and non-enzymatic antioxidant defense indices in humans. Drug Chem Toxicol. 2003;26(1):59–71.
  • Giovanella F, Ferreira GK, Prásdt DE, et al. Effects of primaquine and chloroquine on oxidative stress parameters in rats. An Acad Bras Cienc. 2015;87(2 Suppl):1487–1496.
  • Klouda CB, Stone WL. Oxidative stress, proton fluxes, and chloroquine/hydroxychloroquine treatment for COVID-19. Antioxidants. 2020;9(9):894.
  • Ogunbayo OA, Adisa RA, Ademowo OG, et al. Incidence of chloroquine induced oxidative stress in the blood of rabbit. Int J Pharmacol. 2005;2(1):121–125.
  • Stefanis L. α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(2):a009399.
  • Masoud ST, Vecchio LM, Bergeron Y, et al. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits. Neurobiol Dis. 2015;74:66–75.
  • Needham L-M, Weber J, Fyfe JWB, et al. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species. R Soc Open Sci. 2018;5(2):171399.
  • Zeng B-Y, Dass B, Owen A, et al. 6-Hydroxydopamine lesioning differentially affects α-synuclein mRNA expression in the nucleus accumbens, striatum and substantia nigra of adult rats. Neurosci Lett. 2002;322(1):33–36.
  • Li X, Jiang X, Chu H, et al. Neuroprotective effects of kukoamine a on 6-OHDA-induced parkinson’s model through apoptosis and iron accumulation inhibition. Chin Herb Med. 2021;13(1):105–115.
  • Proft J, Faraji J, Robbins JC, et al. Identification of bilateral changes in TID1 expression in the 6-OHDA rat model of Parkinson’s disease. PLoS One. 2011;6(10):e26045.
  • Ruipérez V, Darios F, Davletov B. Alpha-synuclein, lipids and Parkinson’s disease. Prog Lipid Res. 2010;49(4):420–428.
  • Yakunin E, Moser A, Loeb V, et al. α-Synuclein abnormalities in mouse models of peroxisome biogenesis disorders. J Neurosci Res. 2009;88(4):866–876.
  • Lynch-Day MA, Mao K, Wang K, et al. The role of autophagy in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(4):a009357.
  • Cook KL, Wärri A, Soto-Pantoja DR, et al. Hydroxychloroquine inhibits autophagy to potentiate antiestrogen responsiveness in ER + breast cancer. Clin Cancer Res. 2014;20(12):3222–3232.
  • Soto-Otero R, Méndez-Alvarez E, Hermida-Ameijeiras A, et al. Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: Potential implication in relation to the pathogenesis of Parkinson’s disease. J Neurochem. 2000;74(4):1605–1612.
  • Callio J, Oury TD, Chu CT. Manganese superoxide dismutase protects against 6-Hydroxydopamine injury in mouse brains. J Biol Chem. 2005;280(18):18536–18542.
  • Ichitani Y, Okamura H, Nakahara D, et al. Biochemical and immunocytochemical changes induced by intrastriatal 6-Hydroxydopamine injection in the rat nigrostriatal dopamine neuron system: evidence for cell death in the substantia nigra. Exp Neurol. 1994;130(2):269–278.
  • Pang Y, Lin S, Wright C, et al. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats. Neuroscience. 2016;318:157–165.
  • Stott SRW, Barker RA. Time course of dopamine neuron loss and glial response in the 6-OHDA striatal mouse model of Parkinson’s disease. Eur J Neurosci. 2014;39(6):1042–1056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.