159
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

KIF1A novel frameshift variant p.(Ser887Profs*64) exhibits clinical heterogeneity in a Pakistani family with hereditary sensory and autonomic neuropathy type IIC

, , , ORCID Icon, , , , & show all
Pages 665-675 | Received 03 Jul 2022, Accepted 19 Oct 2022, Published online: 08 Nov 2022

References

  • Rivire JB, Ramalingam S, Lavastre V, et al. KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. Am J Hum Genetics. 2011;89(2):219–230.
  • Auer-Grumbach M. Hereditary sensory and autonomic neuropathies. In: Handbook of clinical neurology. Science direct, Elsevier (Amsterdam) Vol. 115; 2013 p. 893–906.
  • Ingo K. Hereditary sensory and autonomic neuropathy type II. GeneReviews. 2021;1:1–25.
  • Houlden H, King R, Blake J, et al. Clinical, pathological and genetic characterization of hereditary sensory and autonomic neuropathy type I (HSAN I). Brain. 2006;129(2):411–425.
  • Yozu A, Haga N, Funato T, et al. Hereditary sensory and autonomic neuropathy types 4 and 5: review and proposal of a new rehabilitation method. Neurosci Res. 2016;104:105–111.
  • Rivière JB, Verlaan DJ, Shekarabi M, et al. A mutation in the HSN2 gene causes sensory neuropathy type II in a Lebanese family. Ann Neurol. 2004;56(4):572–575.
  • Axelrod FB, Gold-Von Simson G. Hereditary sensory and autonomic neuropathies: types II, III, and IV. Orphanet J Rare Dis. 2007;2(1):1–12.
  • Macefield VG, Norcliffe-Kaufmann L, Löken L, et al. Disturbances in affective touch in hereditary sensory & autonomic neuropathy type III. Int J Psychophysiol. 2014;93(1):56–61.
  • Capsoni S. From genes to pain: Nerve growth factor and hereditary sensory and autonomic neuropathy type V. Eur J Neurosci. 2014;39(3):392–400.
  • Vallat JM, Mathis S, Funalot B. The various Charcot-Marie-Tooth diseases. Curr Opin Neurol. 2013;26(5):219–230.
  • Rotthier A, Baets J, Vriendt E, et al. Genes for hereditary sensory and autonomic neuropathies: a genotype-phenotype correlation. Brain. 2009;132(10):2699–2711.
  • Hartley T, Wagner JD, Warman-Chardon J, et al. Whole-exome sequencing is a valuable diagnostic tool for inherited peripheral neuropathies: outcomes from a cohort of 50 families. Clin Genet. 2018;93(2):301–309.
  • Rossor AM, Polke JM, Houlden H, et al. Clinical implications of genetic advances in charcot-marie-tooth disease. Nat Rev Neurol. 2013;9(10):562–571.
  • Rotthier A, Baets J, Timmerman V, et al. Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat Rev Neurol. 2012;8 (2):73–85.
  • Davidson GL, Murphy SM, Polke JM, et al. Frequency of mutations in the genes associated with hereditary sensory and autonomic neuropathy in a UK cohort. J Neurol. 2012;259(8):1673–1685.
  • Tomaselli PJ, Rossor AM, Horga A, et al. A de novo dominant mutation in KIF1A associated with axonal neuropathy, spasticity and autism spectrum disorder. J Peripher Nerv Syst. 2017;22(4):460–463.
  • Lee JR, Srour M, Kim D, et al. De novo mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy. Human Mutation. 2015;36(1):69–78.
  • Boyle L, Rao L, Kaur S, et al. Genotype and defects in microtubule-based motility correlate with clinical severity in KIF1A-associated neurological disorder. Hum Genet Genomics Adv. 2021;2(2):100026.
  • Demily C, Lesca G, Poisson A, et al. Additive effect of variably penetrant 22q11.2 duplication and pathogenic mutations in autism spectrum disorder: to which extent does the tree hide the Forest? J Autism Dev Disord. 2018;48(8):2886–2889.
  • Pennings M, Schouten MI, van Gaalen J, et al. KIF1A variants are a frequent cause of autosomal dominant hereditary spastic paraplegia. Eur J Hum Genet. 2020;28(1):40–49.
  • Rudenskaya GE, Kadnikova VA, Ryzhkova OP, et al. KIF1A-related autosomal dominant spastic paraplegias (SPG30) in russian families. BMC Neurol. 2020;20(1):290.
  • Sambrook J, F EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed., Vols. 1, 2 and 3. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.
  • Seelow D, Schuelke M, Hildebrandt F, et al. HomozygosityMapper – an interactive approach to homozygosity mapping. Nucleic Acids Res. 2009;37(Web Server):W593–W599.
  • Wildeman M, Van Ophuizen E, Den Dunnen JT, et al. Improving sequence variant descriptions in mutation databases and literature using the mutalyzer sequence variation nomenclature checker. Hum Mutat. 2008;29(1):6–13.
  • Schwarz JM, Cooper DN, Schuelke M, et al. Mutationtaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–362.
  • Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–26.
  • Yang J, Yan R, Roy A, et al. The I-TASSER suite: protein structure and function prediction. Nat Methods. 2015;12 (1):7–8.
  • Letunic I, Khedkar S, Bork P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2021;49(D1):D458–D460.
  • Gudmundsson S, Singer-Berk M, Watts NA, et al. Variant interpretation using population databases: lessons from gnomAD. Hum Mutat. 2022;43(8):1012–1030.
  • Okada Y, Yamazaki H, Sekine-Aizawa Y, et al. The neuron-specific kinesin superfamily protein KIF1A is a uniqye monomeric motor for anterograde axonal ­transport of synaptic vesicle precursors. Cell. 1995;81(5):769–780.
  • Yonekawa V, Harada A, Okada Y, et al. Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J Cell Biol. 1998;141(2):431–441.
  • Yue Y, Sheng Y, Zhang H-N, et al. The CC1-FHA dimer is essential for KIF1A-mediated axonal transport of synaptic vesicles in C. elegans. Biochem Biophys Res Commun. 2013;435(3):441–446.
  • Guo Y, Chen Y, Yang M, et al. A rare KIF1A missense mutation enhances synaptic function and increases seizure activity. Front Genet. 2020;11:61.
  • Doctor RB, Smith ML, Fortune BE, et al. 2012. Fibrocystic diseases of the liver. In: Zakim and boyer’s hepatology. Elsevier (Amsterdam); p. 1202–1222
  • Nemani T, Steel D, Kaliakatsos M., et al. KIF1A-related disorders in children: a wide spectrum of Central and peripheral nervous system involvement. Kurian_KIF1A Revision Draft Clean. 2020;2:117–124.
  • Lee J-R, Shin H, Choi J, et al. An intramolecular interaction between the FHA domain and a coiled coil negatively regulates the kinesin motor KIF1A. Embo J. 2004;23(7):1506–1515.
  • Citterio A, Arnoldi A, Panzeri E, et al. Variants in KIF1A gene in dominant and sporadic forms of hereditary spastic paraparesis. J Neurol. 2015;262(12):2684–2690.
  • Ylikallio E, Kim D, Isohanni P, et al. Dominant transmission of de novo KIF1A motor domain variant underlying pure spastic paraplegia. Eur J Hum Genet. 2015;23(10):1427–1430.
  • Ohba C, Haginoya K, Osaka H, et al. De novo KIF1A mutations cause intellectual deficit, cerebellar atrophy, lower limb spasticity and visual disturbance. J Hum Genet. 2015;60(12):739–742.
  • Ghafoor S, da Costa Silveira K, Qamar R, et al. Exome sequencing identifies a biallelic GALNS variant (p.Asp233Asn) causing mucopolysaccharidosis type IVA in a Pakistani consanguineous family. Genes. 2022;13(10):1743.
  • Riaz M, Tiller J, Ajmal M, et al. Implementation of public health genomics in Pakistan. Eur J Hum Genet. 2019;27(10):1485–1492.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.