219
Views
3
CrossRef citations to date
0
Altmetric
Review Article

The protective role of interaction between vitamin D, sex hormones and calcium in multiple sclerosis

, , , , , & show all
Pages 735-753 | Received 03 Jul 2022, Accepted 07 Nov 2022, Published online: 20 Nov 2022

References

  • Rejdak K, Jackson S, Giovannoni G. Multiple sclerosis: a practical overview for clinicians. Br Med Bull. 2010;95(1):79–104.
  • Elyaman W, Khoury SJ. Th9 cells in the pathogenesis of EAE and multiple sclerosis. Semin Immunopathol. 2017;39(1):79–87.
  • Evans C, Beland SG, Kulaga S, et al. Incidence and prevalence of multiple sclerosis in the americas: a systematic review. Neuroepidemiology. 2013;40(3):195–210.
  • Kingwell E, Marriott JJ, Jetté N, et al. Incidence and prevalence of multiple sclerosis in Europe: a systematic review. BMC Neurol. 2013;13(1):128.
  • Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545–558.
  • Jiang X, Olsson T, Alfredsson L. Age at menarche and risk of multiple sclerosis: current progress from epidemiological investigations. Front Immunol. 2018;9:2600.
  • Ransohoff RM, Hafler DA, Lucchinetti CF. Multiple sclerosis[mdash]a quiet revolution. Nat Rev Neurol. 2015;11(3):134–142.
  • Naci H, Fleurence R, Birt J, et al. Economic burden of multiple sclerosis: a systematic review of the literature. Pharmacoeconomics. 2010;28(5):363–379.
  • Jadidi-Niaragh F, Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol. 2011;74(1):1–13.
  • Kenealy SJ, Pericak-Vance MA, Haines JL. The genetic epidemiology of multiple sclerosis. J Neuroimmunol. 2003;143(1–2):7–12.
  • Doring A, Pfueller CF, Paul F, et al. Exercise in multiple sclerosis – an integral component of disease management. EPMA J. 2011;3(1):2.
  • Goldenberg MM. Multiple sclerosis review. P T. 2012;37(3):175–184.
  • Stys PK. Multiple sclerosis: autoimmune disease or autoimmune reaction? Can J Neurol Sci. 2010;37 Suppl 2: s 16–23.
  • Sato F, Omura S, Martinez NE, et al. Animal models of multiple sclerosis. London, UK: Elsevier; 2011.
  • Ascherio A. Environmental factors in multiple sclerosis. Expert Rev Neurother. 2013;13(12 Suppl):3–9.
  • Schaeffer J, Cossetti C, Mallucci G, et al. Chapter 30 - Multiple sclerosis. In Zigmond MJ, Rowland LP, Coyle JT, editors. Neurobiology of brain disorders. San Diego: Academic Press; 2015. p. 497–520.
  • Lovett-Racke AE, Yang Y, Racke MK. Th1 versus Th17: are T cell cytokines relevant in multiple sclerosis? Biochim Biophys Acta. 2011;1812(2):246–251.
  • Whitacre CC, Gienapp IE, Meyer A, et al. Treatment of autoimmune disease by oral tolerance to autoantigens. Clin Immunol Immunopathol. 1996;80(3 Pt 2):S31–S9.
  • Robinson AP, Harp CT, Noronha A, et al. Chapter 8 - the experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. In Goodin DS, editor. Handbook of clinical neurology, vol. 122. Elsevier; 2014. p. 173–189.
  • Constantinescu CS, Farooqi N, O’Brien K, et al. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol. 2011;164(4):1079–1106.
  • Jadidi-Niaragh F, Mirshafiey A. Histamine and histamine receptors in pathogenesis and treatment of multiple sclerosis. Neuropharmacology. 2010;59(3):180–189.
  • Reale M, de Angelis F, di Nicola M, et al. Relation between pro-inflammatory cytokines and acetylcholine levels in relapsing-remitting multiple sclerosis patients. Int J Mol Sci. 2012;13(10):12656–12664.
  • Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005;23:683–747.
  • Goverman J. Autoimmune T cell responses in the Central nervous system. Nat Rev Immunol. 2009;9(6):393–407.
  • Vasileiadis GK, Dardiotis E, Mavropoulos A, et al. Regulatory B and T lymphocytes in multiple sclerosis: friends or foes? Auto Immun Highlights. 2018;9(1):9.
  • Awad AM, Stuve O. Immunopathogenesis of multiple sclerosis: new insights and therapeutic implications. Continuum (Minneap Minn). 2010;16(5 Multiple Sclerosis):166–180.
  • Viglietta V, Baecher-Allan C, Weiner HL, et al. Loss of functional suppression by CD4 + CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med. 2004;199(7):971–979.
  • Lopes Pinheiro MA, Kooij G, Mizee MR, et al. Immune cell trafficking across the barriers of the Central nervous system in multiple sclerosis and stroke. Biochim Biophys Acta. 2016;1862(3):461–471.
  • Xie Z-X, Zhang H-L, Wu X-J, et al. Role of the immunogenic and tolerogenic subsets of dendritic cells in multiple sclerosis. Mediators Inflamm. 2015;2015:513295.
  • Grigoriadis N, van Pesch V, ParadigMS Group A basic overview of multiple sclerosis immunopathology. Eur J Neurol. 2015;22 Suppl 2:3–13.
  • Thewissen K, Nuyts AH, Deckx N, et al. Circulating dendritic cells of multiple sclerosis patients are proinflammatory and their frequency is correlated with MS-associated genetic risk factors. Mult Scler. 2014;20(5):548–557.
  • Fletcher JM, Lalor SJ, Sweeney CM, et al. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2010;162(1):1–11.
  • Adorini L, Guery JC, Trembleau S. Manipulation of the Th1/Th2 cell balance: an approach to treat human autoimmune diseases? Autoimmunity. 1996;23(1):53–68.
  • Cheng Y, Sun L, Xie Z, et al. Diversity of immune cell types in multiple sclerosis and its animal model: pathological and therapeutic implications. J Neurosci Res. 2017;95(10):1973–1983.
  • Gandhi R, Laroni A, Weiner HL. Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol. 2010;221(1–2):7–14.
  • Denic A, Wootla B, Rodriguez M. CD8(+) T cells in multiple sclerosis. Expert Opin Ther Targets. 2013;17(9):1053–1066.
  • Huseby ES, Huseby PG, Shah S, et al. Pathogenic CD8 T cells in multiple sclerosis and its experimental models. Front Immunol. 2012;3:64.
  • Dargahi N, Katsara M, Tselios T, et al. Multiple sclerosis: immunopathology and treatment update. Brain Sci. 2017;7(7).
  • Lehmann-Horn K, Kinzel S, Weber MS. Deciphering the role of B cells in multiple Sclerosis-Towards specific targeting of pathogenic function. Int J Mol Sci. 2017;18(10).
  • Claes N, Fraussen J, Stinissen P, et al. B cells are multifunctional players in multiple sclerosis pathogenesis: insights from therapeutic interventions. Front Immunol. 2015;6:642.
  • Hernandez-Pedro NY, Espinosa-Ramirez G, de la Cruz VP, et al. Initial immunopathogenesis of multiple sclerosis: innate immune response. Clin Dev Immunol. 2013;2013:413465.
  • Mallampalli MP, Davies E, Wood D, et al. Role of environment and sex differences in the development of autoimmune diseases: a roundtable meeting report. J Womens Health (Larchmt). 2013;22(7):578–586.
  • Bove R, McHenry A, Hellwig K, et al. Multiple sclerosis in men: management considerations. J Neurol. 2016;263(7):1263–1273.
  • Shirani A, Tremlett H. The effect of smoking on the symptoms and progression of multiple sclerosis: a review. J Inflamm Res. 2010;3:115–126.
  • Ribbons KA, McElduff P, Boz C, et al. Male sex is independently associated with faster disability accumulation in relapse-onset MS but not in primary progressive MS. PLoS One. 2015;10(6):e0122686.
  • Shirani A, Zhao Y, Karim ME, et al. Association between use of interferon beta and progression of disability in patients with relapsing-remitting multiple sclerosis. JAMA. 2012;308(3):247–256.
  • Pakpoor J, Goldacre R, Schmierer K, et al. Testicular hypofunction and multiple sclerosis risk: a record-linkage study. Ann Neurol. 2014;76(4):625–628.
  • Bove R, Chitnis T. The role of gender and sex hormones in determining the onset and outcome of multiple sclerosis. Mult Scler. 2014;20(5):520–526.
  • Foster SC, Daniels C, Bourdette DN, et al. Dysregulation of the hypothalamic–pituitary–gonadal axis in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neuroimmunol. 2003;140(1–2):78–87.
  • Kurth F, Luders E, Sicotte NL, et al. Neuroprotective effects of testosterone treatment in men with multiple sclerosis. Neuroimage Clin. 2014;4:454–460.
  • Palaszynski KM, Liu H, Loo KK, et al. Estriol treatment ameliorates disease in males with experimental autoimmune encephalomyelitis: implications for multiple sclerosis. J Neuroimmunol. 2004;149(1–2):84–89.
  • Macció DR, Calfa G, Roth GA. Oral testosterone in male rats and the development of experimental autoimmune encephalomyelitis. Neuroimmunomodulation. 2005;12(4):246–254.
  • Zendedel A, Beyer C, Kipp M. Cuprizone-induced demyelination as a tool to study remyelination and axonal protection. J Mol Neurosci. 2013;51(2):567–572.
  • Patel R, Moore S, Crawford DK, et al. Attenuation of corpus callosum axon myelination and remyelination in the absence of circulating sex hormones. Brain Pathol. 2013;23(4):462–475.
  • Hussain R, Ghoumari AM, Bielecki B, et al. The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. Brain. 2013;136(Pt 1):132–146.
  • Dalal M, Kim S, Voskuhl RR. Testosterone therapy ameliorates experimental autoimmune encephalomyelitis and induces a T helper 2 bias in the autoantigen-specific T lymphocyte response. The Journal of Immunology. 1997;159(1):3–6.
  • Ziehn MO, Avedisian AA, Dervin SM, et al. Therapeutic testosterone administration preserves excitatory synaptic transmission in the hippocampus during autoimmune demyelinating disease. J Neurosci. 2012;32(36):12312–12324.
  • Saldanha CJ, Remage-Healey L, Schlinger BA. Synaptocrine signaling: steroid synthesis and action at the synapse. Endocr Rev. 2011;32(4):532–549.
  • Rensel M, Salwiczek L, Roth J, et al. Context-specific effects of estradiol on spatial learning and memory in the zebra finch. Neurobiol Learn Mem. 2013;100:41–47.
  • Inagaki T, Kaneko N, Zukin RS, et al. Estradiol attenuates ischemia-induced death of hippocampal neurons and enhances synaptic transmission in aged, long-term hormone-deprived female rats. PLoS One. 2012;7(6):e38018.
  • Kramár EA, Babayan AH, Gall CM, et al. Estrogen promotes learning-related plasticity by modifying the synaptic cytoskeleton. Neuroscience. 2013;239:3–16.
  • Ramagopalan S, Valdar W, Criscuoli M, et al. Age of puberty and the risk of multiple sclerosis: a population based study. Eur J Neurol. 2009;16(3):342–347.
  • Hernan M, Hohol M, Olek M, et al. Oral contraceptives and the incidence of multiple sclerosis. Neurology. 2000;55(6):848–854.
  • Zorgdrager A, De Keyser J. Menstrually related worsening of symptoms in multiple sclerosis. J Neurol Sci. 1997;149(1):95–97.
  • Smith R, Studd J. A pilot study of the effect upon multiple sclerosis of the menopause, hormone replacement therapy and the menstrual cycle. J R Soc Med. 1992;85(10):612–613.
  • Sena A, Couderc R, Vasconcelos JC, et al. Oral contraceptive use and clinical outcomes in patients with multiple sclerosis. J Neurol Sci. 2012;317(1-2):47–51.
  • Lebesgue D, Chevaleyre V, Zukin RS, et al. Estradiol rescues neurons from global ischemia-induced cell death: multiple cellular pathways of neuroprotection. Steroids. 2009;74(7):555–561.
  • Arevalo M-A, Azcoitia I, Garcia-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci. 2015;16(1):17–29.
  • Acaz-Fonseca E, Sanchez-Gonzalez R, Azcoitia I, et al. Role of astrocytes in the neuroprotective actions of 17β-estradiol and selective estrogen receptor modulators. Mol Cell Endocrinol. 2014;389(1–2):48–57.
  • Colonna M, Butovsky O. Microglia function in the Central nervous system during health and neurodegeneration. Annu Rev Immunol. 2017;35(1):441–468.
  • Pozzilli C, De Giglio L, Barletta VT, et al. Oral contraceptives combined with interferon β in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2015;2(4):e120.
  • Lélu K, Delpy L, Robert V, et al. Endogenous estrogens, through estrogen receptor α, constrain autoimmune inflammation in female mice by limiting CD4+ T-cell homing into the CNS. Eur J Immunol. 2010;40(12):3489–3498.
  • Voskuhl RR, Palaszynski K. Sex hormones in experimental autoimmune encephalomyelitis: implications for multiple sclerosis. Neuroscientist. 2001;7(3):258–270.
  • Ito A, Bebo BF, Matejuk A, et al. Estrogen treatment down-regulates TNF-α production and reduces the severity of experimental autoimmune encephalomyelitis in cytokine knockout mice. J Immunol. 2001;167(1):542–552.
  • Matejuk A, Adlard K, Zamora A, et al. 17β-Estradiol inhibits cytokine, chemokine, and chemokine receptor mRNA expression in the Central nervous system of female mice with experimental autoimmune encephalomyelitis. J Neurosci Res. 2001;65(6):529–542.
  • Haghmorad D, Amini AA, Mahmoudi MB, et al. Pregnancy level of estrogen attenuates experimental autoimmune encephalomyelitis in both ovariectomized and pregnant C57BL/6 mice through expansion of treg and Th2 cells. J Neuroimmunol. 2014;277(1–2):85–95.
  • Haghmorad D, Salehipour Z, Nosratabadi R, et al. Medium-dose estrogen ameliorates experimental autoimmune encephalomyelitis in ovariectomized mice. J Immunotoxicol. 2016;13(6):885–896.
  • Garay L, Deniselle MCG, Meyer M, et al. Protective effects of progesterone administration on axonal pathology in mice with experimental autoimmune encephalomyelitis. Brain Res. 2009;1283:177–185.
  • Noorbakhsh F, Baker GB, Power C. Allopregnanolone and neuroinflammation: a focus on multiple sclerosis. Front Cell Neurosci. 2014;8:134.
  • Vieth R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr. 1999;69(5):842–856.
  • Sintzel MB, Rametta M, Reder AT. Vitamin D and multiple sclerosis: a comprehensive review. Neurol Ther. 2018;7(1):59–85.
  • Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319–329.
  • Christakos S, Ajibade DV, Dhawan P, et al. Vitamin D: metabolism. Endocrinol Metab Clin North Am. 2010;39(2):243–253.
  • Tamayo M, Manzanares E, Bas M, et al. Calcitriol (1, 25-dihydroxyvitamin D 3) increases L-type calcium current via protein kinase a signaling and modulates calcium cycling and contractility in isolated mouse ventricular myocytes. Heart Rhythm. 2017;14(3):432–439.
  • Evatt ML, DeLong MR, Khazai N, et al. Prevalence of vitamin d insufficiency in patients with parkinson disease and alzheimer disease. Arch Neurol. 2008;65(10):1348–1352.
  • Cantorna MT, Snyder L, Lin Y-D, et al. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients. 2015;7(4):3011–3021.
  • Yin K, Agrawal DK. Vitamin D and inflammatory diseases. J Inflamm Res. 2014;7:69–87.
  • Rotstein DL, Healy BC, Malik MT, et al. Effect of vitamin D on MS activity by disease-modifying therapy class. Neurol Neuroimmunol Neuroinflamm. 2015;2(6):e167.
  • Alharbi FM. Update in vitamin D and multiple sclerosis. Neurosciences (Riyadh). 2015;20(4):329–335.
  • Harandi AA, Harandi AA, Pakdaman H, et al. Vitamin D and multiple sclerosis. Iran J Neurol. 2014;13(1):1–6.
  • Zeitelhofer M, Adzemovic MZ, Gomez-Cabrero D, et al. Functional genomics analysis of vitamin D effects on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis . Proc Natl Acad Sci USA. 2017;114(9):E1678–E1687.
  • Ahangar-Parvin R, Mohammadi-Kordkhayli M, Azizi SV, et al. The modulatory effects of vitamin D on the expression of IL-12 and TGF-β in the spinal cord and serum of mice with experimental autoimmune encephalomyelitis. Iran J Pathol. 2018;13(1):10–22.
  • Smolders J, Thewissen M, Peelen E, et al. Vitamin D status is positively correlated with regulatory T cell function in patients with multiple sclerosis. PLoS One. 2009;4(8):e6635.
  • Jafarzadeh A, Azizi SV, Arabi Z, et al. Vitamin D down-regulates the expression of some Th17 cell-related cytokines, key inflammatory chemokines, and chemokine receptors in experimental autoimmune encephalomyelitis. Nutr Neurosci. 2019;22(10):725–737.
  • Mohammadi-Kordkhayli M, Ahangar-Parvin R, Azizi SV, et al. Vitamin D modulates the expression of IL-27 and IL-33 in the Central nervous system in experimental autoimmune encephalomyelitis (EAE). Iran J Immunol. 2015;12(1):35–49.
  • Hayes CE, Hubler SL, Moore JR, et al. Vitamin D actions on CD4(+). Front Immunol. 2015;6:100.
  • Chen J, Bruce D, Cantorna MT. Vitamin D receptor expression controls proliferation of naive CD8+ T cells and development of CD8 mediated gastrointestinal inflammation. BMC Immunol. 2014;15:6.
  • Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins a and D take Centre stage. Nat Rev Immunol. 2008;8(9):685–698.
  • Correale J, Ysrraelit MC, Gaitan MI. Immunomodulatory effects of vitamin D in multiple sclerosis. Brain. 2009;132(Pt 5):1146–1160.
  • Chiuso-Minicucci F, Ishikawa LLW, Mimura LAN, et al. Treatment with vitamin D/MOG association suppresses experimental autoimmune encephalomyelitis. PLoS One. 2015;10(5):e0125836-e.
  • Dankers W, Colin EM, van Hamburg JP, et al. Vitamin D in autoimmunity: molecular mechanisms and therapeutic potential. Front Immunol. 2016;7:697.
  • Nashold FE, Miller DJ, Hayes CE. 1,25-dihydroxyvitamin D3 treatment decreases macrophage accumulation in the CNS of mice with experimental autoimmune encephalomyelitis. J Neuroimmunol. 2000;103(2):171–179.
  • Chu F, Shi M, Zheng C, et al. The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol. 2018;318:1–7.
  • Dionne S, Duchatelier CF, Seidman EG. The influence of vitamin D on M1 and M2 macrophages in patients with Crohn’s disease. Innate Immun. 2017;23(6):557–565.
  • Nakagawa Y, Chiba K. Role of microglial m1/m2 polarization in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals (Basel). 2014;7(12):1028–1048.
  • Wrzosek M, Łukaszkiewicz J, Wrzosek M, et al. Vitamin D and the Central nervous system. Pharmacol Rep. 2013;65(2):271–278.
  • Garcion E, Wion-Barbot N, Montero-Menei CN, et al. New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab. 2002;13(3):100–105.
  • Takahashi S, Maeda T, Sano Y, et al. Active form of vitamin D directly protects the blood–brain barrier in multiple sclerosis. Clin Exp Neuroimmunol. 2017;8(3):244–254.
  • Haghmorad D, Yazdanpanah E, Jadid Tavaf M, et al. Prevention and treatment of experimental autoimmune encephalomyelitis induced mice with 1, 25-dihydroxyvitamin D3. Neurol Res. 2019;41(10):943–957.
  • Wobke TK, Sorg BL, Steinhilber D. Vitamin D in inflammatory diseases. Front Physiol. 2014;5:244.
  • Koduah P, Paul F, Dörr J-M. Vitamin D in the prevention, prediction and treatment of neurodegenerative and neuroinflammatory diseases. EPMA J. 2017;8(4):313–325.
  • Cadden MH, Koven NS, Ross MK. Neuroprotective effects of vitamin D in multiple sclerosis. Neurosci Med. 2011;02(03):198–207.
  • Di Somma C, Scarano E, Barrea L, et al. Vitamin D and neurological diseases: an endocrine view. Int J Mol Sci. 2017;18(11)
  • Hedstrom AK, Olsson T, Alfredsson L. The role of environment and lifestyle in determining the risk of multiple sclerosis. Curr Top Behav Neurosci. 2015;26:87–104.
  • Simpson S, Jr., Blizzard L, Otahal P, et al. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J Neurol Neurosurg Psychiatry. 2011;82(10):1132–1141.
  • Harandi AA, Shahbeigi S, Pakdaman H, et al. Association of serum 25(OH) vitamin D3 concentration with severity of multiple sclerosis. Iran J Neurol. 2012;11(2):54–58.
  • Soilu-Hanninen M, Airas L, Mononen I, et al. 25-Hydroxyvitamin D levels in serum at the onset of multiple sclerosis. Mult Scler. 2005;11(3):266–271.
  • Becker KG. The common variants/multiple disease hypothesis of common complex genetic disorders. Med Hypotheses. 2004;62(2):309–317.
  • Dastani Z, Li R, Richards B. Genetic regulation of vitamin D levels. Calcif Tissue Int. 2013;92(2):106–117.
  • , Sawcer S, Hellenthal G, Pirinen M, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476(7359):214–219.
  • Orton SM, Morris AP, Herrera BM, et al. Evidence for genetic regulation of vitamin D status in twins with multiple sclerosis. Am J Clin Nutr. 2008;88(2):441–447.
  • Laursen JH, Sondergaard HB, Albrechtsen A, et al. Genetic and environmental determinants of 25-hydroxyvitamin D levels in multiple sclerosis. Mult Scler. 2015;21(11):1414–1422.
  • Scazzone C, Agnello L, Ragonese P, et al. Association of CYP2R1 rs10766197 with MS risk and disease progression. J Neurosci Res. 2018;96(2):297–304.
  • Manousaki D, Dudding T, Haworth S, et al. Low-Frequency synonymous coding variation in CYP2R1 has large effects on vitamin D levels and risk of multiple sclerosis. Am J Hum Genet. 2017;101(2):227–238.
  • Simon KC, Munger KL, Xing Y, et al. Polymorphisms in vitamin D metabolism related genes and risk of multiple sclerosis. Mult Scler. 2010;16(2):133–138.
  • Ramasamy A, Trabzuni D, Forabosco P, et al. Genetic evidence for a pathogenic role for the vitamin D3 metabolizing enzyme CYP24A1 in multiple sclerosis. Mult Scler Relat Disord. 2014;3(2):211–219.
  • Agnello L, Scazzone C, Lo Sasso B, et al. CYP27A1, CYP24A1, and RXR-alpha polymorphisms, vitamin D, and multiple sclerosis: a pilot study. J Mol Neurosci. 2018;66(1):77–84.
  • Zhuang JC, Huang ZY, Zhao GX, et al. Variants of CYP27B1 are associated with both multiple sclerosis and neuromyelitis optica patients in Han Chinese population. Gene. 2015;557(2):236–239.
  • Wang TJ, Zhang F, Richards JB, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010;376(9736):180–188.
  • Alloza I, Otaegui D, de Lapuente AL, et al. ANKRD55 and DHCR7 are novel multiple sclerosis risk loci. Genes Immun. 2012;13(3):253–257.
  • Pytel V, Matias-Guiu JA, Torre-Fuentes L, et al. Exonic variants of genes related to the vitamin D signaling pathway in the families of familial multiple sclerosis using whole-exome next generation sequencing. Brain Behav. 2019;9(4):e01272.
  • Sundqvist E, Baarnhielm M, Alfredsson L, et al. Confirmation of association between multiple sclerosis and CYP27B1. Eur J Hum Genet. 2010;18(12):1349–1352.
  • Kosakai A, Ito D, Nihei Y, et al. Degeneration of mesencephalic dopaminergic neurons in klotho mouse related to vitamin D exposure. Brain Res. 2011;1382:109–117.
  • Agnello L, Bivona G, Lo Sasso B, et al. Galectin-3 in acute coronary syndrome. Clin Biochem. 2017;50(13-14):797–803.
  • Niino M, Kikuchi S, Fukazawa T, et al. No association of vitamin D-binding protein gene polymorphisms in japanese patients with MS. J Neuroimmunol. 2002;127(1-2):177–179.
  • Orton SM, Ramagopalan SV, Para AE, et al. Vitamin D metabolic pathway genes and risk of multiple sclerosis in Canadians. J Neurol Sci. 2011;305(1–2):116–20.
  • Gauzzi MC. Vitamin D-binding protein and multiple sclerosis: evidence, controversies, and needs. Mult Scler. 2018;24(12):1526–1535.
  • Abdollahzadeh R, Fard MS, Rahmani F, et al. Predisposing role of vitamin D receptor (VDR) polymorphisms in the development of multiple sclerosis: a case-control study. J Neurol Sci. 2016;367:148–151.
  • Ben-Selma W, Ben-Fredj N, Chebel S, et al. Age- and gender-specific effects on VDR gene polymorphisms and risk of the development of multiple sclerosis in Tunisians: a preliminary study. Int J Immunogenet. 2015;42(3):174–181.
  • Smolders J, Peelen E, Thewissen M, et al. The relevance of vitamin D receptor gene polymorphisms for vitamin D research in multiple sclerosis. Autoimmun Rev. 2009;8(7):621–626.
  • Segal BM, Cohen JA, Antel J. Environmental factors, genetics, and epigenetics in MS susceptibility and clinical course. Mult Scler. 2018;24(1):4–5.
  • Scazzone C, Agnello L, Bivona G, et al. Vitamin D and genetic susceptibility to multiple sclerosis. Biochem Genet. 2021;59(1):1–30.
  • Adzemovic MZ, Zeitelhofer M, Hochmeister S, et al. Efficacy of vitamin D in treating multiple sclerosis-like neuroinflammation depends on developmental stage. Exp Neurol. 2013;249:39–48.
  • Spach KM, Pedersen LB, Nashold FE, et al. Gene expression analysis suggests that 1,25-dihydroxyvitamin D3 reverses experimental autoimmune encephalomyelitis by stimulating inflammatory cell apoptosis. Physiol Genomics. 2004;18(2):141–151.
  • Straub DA. Calcium supplementation in clinical practice: a review of forms, doses, and indications. Nutr Clin Pract. 2007;22(3):286–296.
  • Peterlik M, Cross HS. Vitamin D and calcium deficits predispose for multiple chronic diseases. Eur J Clin Invest. 2005;35(5):290–304.
  • Meehan TF, Vanhooke J, Prahl J, et al. Hypercalcemia produced by parathyroid hormone suppresses experimental autoimmune encephalomyelitis in female but not male mice. Arch Biochem Biophys. 2005;442(2):214–221.
  • Cantorna MT, Humpal-Winter J, DeLuca HF. Dietary calcium is a major factor in 1,25-dihydroxycholecalciferol suppression of experimental autoimmune encephalomyelitis in mice. J Nutr. 1999;129(11):1966–1971.
  • Oh-Hora M, Rao A. Calcium signaling in lymphocytes. Curr Opin Immunol. 2008;20(3):250–258.
  • Feske S. Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol. 2007;7(9):690–702.
  • Izquierdo JH, Bonilla-Abadia F, Canas CA, et al. Calcium, channels, intracellular signaling and autoimmunity. Reumatol Clin. 2014;10(1):43–47.
  • Hogan PG, Lewis RS, Rao A. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol. 2010;28:491–533.
  • Dolmetsch RE, Lewis RS, Goodnow CC, et al. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature. 1997;386(6627):855–858.
  • Vig M, Kinet JP. Calcium signaling in immune cells. Nat Immunol. 2009;10(1):21–27.
  • Miller AT, Dahlberg C, Sandberg ML, et al. Inhibition of the inositol kinase ITPKB augments calcium signaling in lymphocytes and reveals a novel strategy to treat autoimmune disease. PLoS One. 2015;10(6):e0131071.
  • Lewis RS. Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol. 2001;19:497–521.
  • Tutsch E, Griesemer D, Schwarz A, et al. Two-photon analysis of calcium signals in T lymphocytes of intact lamina propria from human intestine. Eur J Immunol. 2004;34(12):3477–3484.
  • Ciarcia R, Vitiello MT, Galdiero M, et al. Imatinib treatment inhibit IL-6, IL-8, NF-KB and AP-1 production and modulate intracellular calcium in CML patients. J Cell Physiol. 2012;227(6):2798–2803.
  • Schwarz EC, Qu B, Hoth M. Calcium, cancer and killing: the role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells. Biochim Biophys Acta. 2013;1833(7):1603–1611.
  • Monaco S, Jahraus B, Samstag Y, et al. Nuclear calcium is required for human T cell activation. J Cell Biol. 2016;215(2):231–243.
  • Dornmair K, Goebels N, Weltzien HU, et al. T-Cell-Mediated autoimmunity: novel techniques to characterize autoreactive T-Cell receptors. Am J Pathol. 2003;163(4):1215–1226.
  • Goldberg P, Fleming MC, Picard EH. Multiple sclerosis: decreased relapse rate through dietary supplementation with calcium, magnesium and vitamin D. Med Hypotheses. 1986;21(2):193–200.
  • Cahalan MD, Chandy KG. Ion channels in the immune system as targets for immunosuppression. Curr Opin Biotechnol. 1997;8(6):749–756.
  • Haghmorad D, Mahmoudi MB, Mahmoudi M, et al. Calcium intervention ameliorates experimental model of multiple sclerosis. Oman Med J. 2014;29(3):185–189.
  • Veldurthy V, Wei R, Oz L, et al. Vitamin D, calcium homeostasis and aging. Bone Res. 2016;4:16041.
  • Wang Y, Marling SJ, Zhu JG, et al. Development of experimental autoimmune encephalomyelitis (EAE) in mice requires vitamin D and the vitamin D receptor. Proc Natl Acad Sci USA. 2012;109(22):8501–8504.
  • Loken-Amsrud KI, Lossius A, Torkildsen O, et al. Impact of the environment on multiple sclerosis. Tidsskr nor Laegeforen. 2015;135(9):856–860.
  • Landin-Wilhelmsen K, Wilhelmsen L, Wilske J, et al. Sunlight increases serum 25(OH) vitamin D concentration whereas 1,25(OH)2D3 is unaffected. Results from a general population study in goteborg, Sweden (the WHO MONICA project). Eur J Clin Nutr. 1995;49(6):400–407.
  • Bove R, Chitnis T. Sexual disparities in the incidence and course of MS. Clin Immunol. 2013;149(2):201–210.
  • Lockshin MD. Sex differences in autoimmune disease. Lupus. 2006;15(11):753–756.
  • Orton SM, Herrera BM, Yee IM, et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol. 2006;5(11):932–936.
  • Bebo BF, Jr., Schuster JC, Vandenbark AA, et al. Gender differences in experimental autoimmune encephalomyelitis develop during the induction of the immune response to encephalitogenic peptides. J Neurosci Res. 1998;52(4):420–426.
  • Rolf L, Damoiseaux J, Hupperts R, et al. Network of nuclear receptor ligands in multiple sclerosis: common pathways and interactions of sex-steroids, corticosteroids and vitamin D3-derived molecules. Autoimmun Rev. 2016;15(9):900–910.
  • Tomassini V, Onesti E, Mainero C, et al. Sex hormones modulate brain damage in multiple sclerosis: MRI evidence. J Neurol Neurosurg Psychiatry. 2005;76(2):272–275.
  • Pozzilli C, Falaschi P, Mainero C, et al. MRI in multiple sclerosis during the menstrual cycle: relationship with sex hormone patterns. Neurology. 1999;53(3):622–624.
  • Thomas T, Banwell B. Multiple sclerosis in children. Semin Neurol. 2008;28(1):69–83.
  • Hughes MD. Multiple sclerosis and pregnancy. Neurol Clin. 2004;22(4):757–769.
  • Eikelenboom MJ, Killestein J, Kragt JJ, et al. Gender differences in multiple sclerosis: cytokines and vitamin D. J Neurol Sci. 2009;286(1–2):40–42.
  • Soldan SS, Alvarez Retuerto AI, Sicotte NL, et al. Immune modulation in multiple sclerosis patients treated with the pregnancy hormone estriol. J Immunol. 2003;171(11):6267–6274.
  • Hayes CE, Cantorna MT, DeLuca HF. Vitamin D and multiple sclerosis. Proc Soc Exp Biol Med. 1997;216(1):21–27.
  • Ebers GC. Environmental factors and multiple sclerosis. Lancet Neurol. 2008;7(3):268–277.
  • Freedman DM, Dosemeci M, Alavanja MC. Mortality from multiple sclerosis and exposure to residential and occupational solar radiation: a case-control study based on death certificates. Occup Environ Med. 2000;57(6):418–421.
  • Spach KM, Hayes CE. Vitamin D3 confers protection from autoimmune encephalomyelitis only in female mice. J Immunol. 2005;175(6):4119–4126.
  • Kragt J, van Amerongen B, Killestein J, et al. Higher levels of 25-hydroxyvitamin D are associated with a lower incidence of multiple sclerosis only in women. Mult Scler. 2009;15(1):9–15.
  • Nashold FE, Spach KM, Spanier JA, et al. Estrogen controls vitamin D3-mediated resistance to experimental autoimmune encephalomyelitis by controlling vitamin D3 metabolism and receptor expression. J Immunol. 2009;183(6):3672–3681.
  • Correale J, Ysrraelit MC, Gaitan MI. Gender differences in 1,25 dihydroxyvitamin D3 immunomodulatory effects in multiple sclerosis patients and healthy subjects. J Immunol. 2010;185(8):4948–4958.
  • Kipp M, Amor S, Krauth R, et al. Multiple sclerosis: neuroprotective alliance of estrogen-progesterone and gender. Front Neuroendocrinol. 2012;33(1):1–16.
  • Yague JG, Garcia-Segura LM, Azcoitia I. Selective transcriptional regulation of aromatase gene by vitamin D, dexamethasone, and mifepristone in human glioma cells. Endocrine. 2009;35(2):252–261.
  • Krishnan AV, Swami S, Peng L, et al. Tissue-selective regulation of aromatase expression by calcitriol: implications for breast cancer therapy. Endocr Rev. 2009;30(7):929.
  • Cutolo M, Paolino S, Sulli A, et al. Vitamin D, steroid hormones, and autoimmunity. Ann N Y Acad Sci. 2014;1317:39–46.
  • Gray TK, McAdoo T, Hatley L, et al. Fluctuation of serum concentration of 1,25-dihydroxyvitamin D3 during the menstrual cycle. Am J Obstet Gynecol. 1982;144(8):880–884.
  • Aarskog D, Aksnes L, Markestad T, et al. Effect of estrogen on vitamin D metabolism in tall girls. J Clin Endocrinol Metab. 1983;57(6):1155–1158.
  • Elloso MM, Phiel K, Henderson RA, et al. Suppression of experimental autoimmune encephalomyelitis using estrogen receptor-selective ligands. J Endocrinol. 2005;185(2):243–252.
  • Harris HA, Katzenellenbogen JA, Katzenellenbogen BS. Characterization of the biological roles of the estrogen receptors, ERalpha and ERbeta, in estrogen target tissues in vivo through the use of an ERalpha-selective ligand. Endocrinology. 2002;143(11):4172–4177.
  • Tiwari-Woodruff S, Morales LB, Lee R, et al. Differential neuroprotective and antiinflammatory effects of estrogen receptor (ER)alpha and ERbeta ligand treatment. Proc Natl Acad Sci USA. 2007;104(37):14813–14818.
  • Offner H, Polanczyk M. A potential role for estrogen in experimental autoimmune encephalomyelitis and multiple sclerosis. Ann N Y Acad Sci. 2006;1089:343–372.
  • Polanczyk MJ, Jones RE, Subramanian S, et al. T lymphocytes do not directly mediate the protective effect of estrogen on experimental autoimmune encephalomyelitis. Am J Pathol. 2004;165(6):2069–2077.
  • Omdahl JL, Morris HA, May BK. Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation. Annu Rev Nutr. 2002;22:139–166.
  • Haddad JG. Human serum binding protein for vitamin D and its metabolites (DBP): evidence that actin is the DBP binding component in human skeletal muscle. Arch Biochem Biophys. 1982;213(2):538–544.
  • McLeod JF, Kowalski MA, Haddad JG. Characterization of a monoclonal antibody to human serum vitamin D binding protein (Gc globulin): recognition of an epitope hidden in membranes of circulating monocytes. Endocrinology. 1986;119(1):77–83.
  • Kew RR, Sibug MA, Liuzzo JP, et al. Localization and quantitation of the vitamin D binding protein (Gc-globulin) in human neutrophils. Blood. 1993;82(1):274–283.
  • Adams JS, Chen H, Chun R, et al. Substrate and enzyme trafficking as a means of regulating 1,25-dihydroxyvitamin D synthesis and action: the human innate immune response. J Bone Miner Res. 2007;22(S2):V20–V24. et al
  • Rowling MJ, Kemmis CM, Taffany DA, et al. Megalin-mediated endocytosis of vitamin D binding protein correlates with 25-hydroxycholecalciferol actions in human mammary cells. J Nutr. 2006;136(11):2754–2759.
  • Hanwell HE, Banwell B. Assessment of evidence for a protective role of vitamin D in multiple sclerosis. Biochim Biophys Acta. 2011;1812(2):202–212.
  • Sykes L, MacIntyre DA, Yap XJ, et al. Changes in the Th1: th2 cytokine bias in pregnancy and the effects of the anti-inflammatory cyclopentenone prostaglandin 15-deoxy-Delta(12,14)-prostaglandin J2. Mediators Inflamm. 2012;2012:416739.
  • Kovats S, Carreras E. Regulation of dendritic cell differentiation and function by estrogen receptor ligands. Cell Immunol. 2008;252(1–2):81–90.
  • Polanczyk MJ, Carson BD, Subramanian S, et al. Cutting edge: estrogen drives expansion of the CD4 + CD25+ regulatory T cell compartment. J Immunol. 2004;173(4):2227–2230.
  • Rodgers JM, Miller SD. Cytokine control of inflammation and repair in the pathology of multiple sclerosis. Yale J Biol Med. 2012;85(4):447–468.
  • Prietl B, Treiber G, Pieber TR, et al. Vitamin D and immune function. Nutrients. 2013;5(7):2502–2521.
  • Adorini L. Immunomodulatory effects of vitamin D receptor ligands in autoimmune diseases. Int Immunopharmacol. 2002;2(7):1017–1028.
  • Smolders J, Damoiseaux J, Menheere P, et al. Vitamin D as an immune modulator in multiple sclerosis, a review. J Neuroimmunol. 2008;194(1-2):7–17.
  • Chen S, Sims GP, Chen XX, et al. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol. 2007;179(3):1634–1647.
  • Lemire JM, Archer DC. 1,25-dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J Clin Invest. 1991;87(3):1103–1107.
  • Cashman KD, Hayes A, O’Donovan SM, et al. Dietary calcium does not interact with vitamin D(3) in terms of determining the response and catabolism of serum 25-hydroxyvitamin D during winter in older adults. Am J Clin Nutr. 2014;99(6):1414–1423.
  • Chakrabarty S, Wang H, Canaff L, et al. Calcium sensing receptor in human Colon carcinoma: interaction with Ca(2+) and 1,25-dihydroxyvitamin D(3). Cancer Res. 2005;65(2):493–498.
  • Whitehead CC, McCormack HA, McTeir L, et al. High vitamin D3 requirements in broilers for bone quality and prevention of tibial dyschondroplasia and interactions with dietary calcium, available phosphorus and vitamin A. Br Poult Sci. 2004;45(3):425–436.
  • Hundehege P, Fernandez-Orth J, Romer P, et al. Targeting Voltage-Dependent calcium channels with pregabalin exerts a direct neuroprotective effect in an animal model of multiple sclerosis. Neurosignals. 2018;26(1):77–93.
  • Grant AM, Avenell A, Campbell MK, et al. Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (randomised evaluation of calcium or vitamin D, RECORD): a randomised placebo-controlled trial. Lancet. 2005;365(9471):1621–1628.
  • Cao S, Tian XL, Yu WX, et al. Oleanolic acid and ursolic acid improve bone properties and calcium balance and modulate vitamin D metabolism in aged female rats. Front Pharmacol. 2018;9:1435.
  • Dudani SJ, Kalhan S, Sharma SP. Vitamin D and multiple sclerosis: potential pathophysiological role and clinical implications. Int J Appl Basic Med Res. 2011;1(2):71–74.
  • Niedziela N, Pierzchała K, Zalejska-Fiolka J, et al. Assessment of biochemical and densitometric markers of Calcium-Phosphate metabolism in the groups of patients with multiple sclerosis selected due to the serum level of vitamin D3. Biomed Res Int. 2018;2018:9329123.
  • Johansson S, Melhus H. Vitamin a antagonizes calcium response to vitamin D in man. J Bone Miner Res. 2001;16(10):1899–1905.
  • Aloia J, Bojadzievski T, Yusupov E, et al. The relative influence of calcium intake and vitamin D status on serum parathyroid hormone and bone turnover biomarkers in a double-blind, placebo-controlled parallel group, longitudinal factorial design. J Clin Endocrinol Metab. 2010;95(7):3216–3224.
  • Stein MS, Ward GJ, Butzkueven H, et al. Dysequilibrium of the PTH-FGF23-vitamin D axis in relapsing remitting multiple sclerosis; a longitudinal study. Mol Med. 2018;24(1):27.
  • Protiva P, Pendyala S, Nelson C, et al. Calcium and 1,25-dihydroxyvitamin D3 modulate genes of immune and inflammatory pathways in the human Colon: a human crossover trial. Am J Clin Nutr. 2016;103(5):1224–1231.
  • Cubillos S, Norgauer J. Low vitamin D-modulated calcium-regulating proteins in psoriasis vulgaris plaques: S100A7 overexpression depends on joint involvement. Int J Mol Med. 2016;38(4):1083–1092.
  • Li YC, Bolt MJ, Cao LP, et al. Effects of vitamin D receptor inactivation on the expression of calbindins and calcium metabolism. Am J Physiol Endocrinol Metab. 2001;281(3):E558–64.
  • Albert PJ, Proal AD, Marshall TG. Vitamin D: the alternative hypothesis. Autoimmun Rev. 2009;8(8):639–644.
  • Agmon-Levin N, Theodor E, Segal RM, et al. Vitamin D in systemic and organ-specific autoimmune diseases. Clin Rev Allergy Immunol. 2013;45(2):256–266.
  • Kubicka-Baczyk K, Labuz-Roszak B, Pierzchala K, et al. Calcium-phosphate metabolism in patients with multiple sclerosis. J Endocrinol Invest. 2015;38(6):635–642.
  • Clapham DE. Calcium signaling. Cell. 2007;131(6):1047–1058.
  • Schwarz A, Schumacher M, Pfaff D, et al. Fine-tuning of regulatory T cell function: the role of calcium signals and naive regulatory T cells for regulatory T cell deficiency in multiple sclerosis. J Immunol. 2013;190(10):4965–4970.
  • Feske S, Wulff H, Skolnik EY. Ion channels in innate and adaptive immunity. Annu Rev Immunol. 2015;33:291–353.
  • Marques CD, Dantas AT, Fragoso TS, et al. The importance of vitamin D levels in autoimmune diseases. Rev Bras Reumatol. 2010;50(1):67–80.
  • Eggleton P, Llewellyn DH. Pathophysiological roles of calreticulin in autoimmune disease. Scand J Immunol. 1999;49(5):466–473.
  • Gezen-Ak D, Dursun E. Molecular basis of vitamin D action in neurodegeneration: the story of a team perspective. Hormones (Athens). 2019;18(1):17–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.