182
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Harnessing the power of probiotics to enhance neuroplasticity for neurodevelopment and cognitive function in stunting: a comprehensive review

ORCID Icon, , &
Received 10 Aug 2023, Accepted 10 Nov 2023, Published online: 21 Nov 2023

References

  • UNICEF WHO World Bank Group Joint Child Malnutrition Estimates. ‘Levels and trends in child malnutrition’, 2021.
  • WHO and UNICEF. ‘The extension of the 2025 Maternal, Infant and Young Child nutrition targets to 2030’, 2017. Online]. Available: http://www.who.int/nutrition/healthygrowthproj/en/index1.html.
  • ‘Global Nutrition Report Action on equity to end malnutrition’, UK, 2020.
  • Kementerian Kesehatan RI, ‘Riset Kesehatan Dasar 2018’, Jakarta, 2018.
  • Kementerian Kesehatan RI, ‘Riset Kesehatan Dasar 2013’, Jakarta, 2013.
  • Lindayani L, Supriatin E, Sudrajat DA, et al. The effect of stunting on cognitive and motor development in toddler children: literature review. Jurnal Ilmu Keperawata Anak. 2020;3(2):31–41. doi: 10.26594/jika.1.2.2020.
  • Probosiwi H, Huriyati E, Ismail D. Stunting dan perkembangan pada anak usia 12-60 bulan di kalasan S tunting and development among 12-60 month aged children in Kalasan. BKM Int J Community Med Public Health. 2017;33(11):559–564. doi: 10.22146/bkm.26550.
  • Handryastuti S, Pusponegoro HD, Nurdadi S, et al. Comparison of cognitive function in children with stunting and children with undernutrition with normal stature. J Nutr Metab. 2022;2022:9775727–9775725. doi: 10.1155/2022/9775727.
  • Kustanto A. The prevalence of stunting, poverty, and economic growth in Indonesia: a panel data dynamic causality analysis. JDE. 2021;6(2):150. doi: 10.20473/jde.v6i2.22358.
  • Murciano- brea J, Garcia- montes M, Geuna S, et al. Gut microbiota and neuroplasticity. Cells. 2021;10(8):2084. doi: 10.3390/cells10082084.
  • Simanjuntak BY, Annisa R, Saputra AI. Kajian literatur: berhubungankah mikrobiota saluran cerna dengan stunting pada anak balita? AMNT. 2022;6(1SP):343–351. doi: 10.20473/amnt.v6i1SP.2022.343-351.
  • Owino V, Ahmed T, Freemark M, et al. Environmental enteric dysfunction and growth failure/stunting in global child health. Pediatrics. 2016;138(6):2–10. doi: 10.1542/peds.2016-0641.
  • Prado EL, Sebayang SK, Apriatni M, et al. Maternal multiple micronutrient supplementation and other biomedical and socioenvironmental influences on children’s cognition at age 9–12 years in Indonesia: follow-up of the SUMMIT randomised trial. Lancet Glob Health. 2017;5(2):e217–e228. doi: 10.1016/S2214-109X(16)30354-0.
  • Dalile B, Van Oudenhove L, Vervliet B, et al. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol. 2019;16(8):461–478. doi: 10.1038/s41575-019-0157-3.
  • Rianda D, Agustina R, Setiawan EA, et al. Effect of probiotic supplementation on cognitive function in children and adolescents: a systematic review of randomised trials. Benef Microbes. 2019;10(8):873–882. doi: 10.3920/BM2019.0068.
  • Schwarzer M, Gautam UK, Makki K, et al. Microbe-mediated intestinal NOD2 stimulation improves linear growth of undernourished infant mice. Science. 2023;379(6634):826–833. doi: 10.1126/science.ade9767.
  • Dyer AH, Vahdatpour C, Sanfeliu A, et al. The role of insulin-like growth factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience. 2016;325:89–99. doi: 10.1016/j.neuroscience.2016.03.056.
  • Alam MA, Richard SA, Fahim SM, et al. Impact of early-onset persistent stunting on cognitive development at 5 years of age: results from a multi-country cohort study. PLOS One. 2020;15(1):e0227839. doi: 10.1371/journal.pone.0227839.
  • McCoy DC, Peet ED, Ezzati M, et al. Early childhood developmental status in low- and middle-income countries: national, regional, and global prevalence estimates using predictive modeling. PLoS Med. 2016;13(6):e1002034. doi: 10.1371/journal.pmed.1002034.
  • Soliman A, et al. Early and long-term consequences of nutritional stunting: from childhood to adulthood. Acta Biomedica. 2021;92(1):1–11. doi: 10.23750/abm.v92i1.11346.
  • Arini D, et al. Gangguan Perkembangan Motorik dan Kognitif pada anak Toodler yang Mengalami Stunting di Wilayah Pesisir Surabaya. J of Heal Sci & Prevent. 2019;3(2):122–128. doi: 10.29080/jhsp.v3i2.231.
  • Woldehanna T, Behrman JR, Araya MW. ‘The effect of early childhood stunting on children’s cognitive achievements: evidence from young lives Ethiopia’. [Online]. Available: www.younglives.org.uk.
  • Prendergast AJ, Humphrey JH. The stunting syndrome in developing countries. Paediatr Int Child Health. 2014;34(4):250–265. doi: 10.1179/2046905514Y.0000000158.
  • Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010;20(4):327–348. doi: 10.1007/s11065-010-9148-4.
  • Poh, Bee Koon, Rojroonwasinkul, Nipa, Le Nyugen, Bao Khanh, et al., ‘Relationship between anthropometric indicators and cognitive performance in southeast asian school-aged Children’, Br J Nutr. 2013;110(S3):S57–S64, doi: 10.1017/S0007114513002079.
  • Galler JR, Bringas-Vega ML, Tang Q, et al. Neurodevelopmental effects of childhood malnutrition: a neuroimaging perspective. Neuroimage. 2021;231:117828. doi: 10.1016/j.neuroimage.2021.117828.
  • Roberts SB, et al. A pilot randomized controlled trial of a new supplementary food designed to enhance cognitive performance during prevention and treatment of malnutrition in childhood. 2017.
  • Hugon P, Lagier J-C, Colson P, et al. Repertoire of human gut microbes. Microb Pathog.2017;106:103–112. doi: 10.1016/j.micpath.2016.06.020.
  • Leung K, Thuret S. Gut microbiota: a modulator of brain plasticity and cognitive function in ageing. Healthcare. 2015;3(4):898–916. doi: 10.3390/healthcare3040898.
  • Hickey L, Jacobs SE, Garland SM, Probiotics in neonatology. J Paediatr Child Health. 2012;48(9):777–783. doi: 10.1111/j.1440-1754.2012.02508.x.
  • Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–1638. doi: 10.1126/science.1110591.
  • Stewart CJ, Ajami NJ, O’Brien JL, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562(7728):583–588. doi: 10.1038/s41586-018-0617-x.
  • Naveed M, Zhou Q-G, Xu C, et al. Gut-brain axis: a matter of concern in neuropsychiatric disorders…!. Prog Neuropsychopharmacol Biol Psychiatry. 2021;104:110051. doi: 10.1016/j.pnpbp.2020.110051.
  • Kundu P, Blacher E, Elinav E, et al. Our gut microbiome: the evolving inner self. Cell. 2017;171(7):1481–1493. doi: 10.1016/j.cell.2017.11.024.
  • Borre YE, Moloney RD, Clarke G, et al. The impact of microbiota on brain and behavior: mechanisms & therapeutic potential. Adv Exp Med Biol. 2014;817:373–403. doi: 10.1007/978-1-4939-0897-4_17.
  • Cerdó T, Ruíz A, Suárez A, et al. Probiotic, prebiotic, and brain development. Nutrients. 2017;9(11):1247 doi: 10.3390/nu9111247.
  • Mateos-Aparicio P, Rodríguez-Moreno A. The impact of studying brain plasticity. Front Cell Neurosci. 2019;13:66. doi: 10.3389/fncel.2019.00066.
  • Fauth M, Tetzlaff C. Opposing effects of neuronal activity on structural plasticity. Front Neuroanat. 2016;10:75. doi: 10.3389/fnana.2016.00075.
  • Von Bernhardi R, Eugenín-Von Bernhardi L, Eugenín J. What is neural plasticity?. in Advances in experimental medicine and biology, vol. 1015, Springer New York LLC, 2017, pp. 1–15. doi: 10.1007/978-3-319-62817-2_1.
  • Budge S, Parker AH, Hutchings PT, et al. Environmental enteric dysfunction and child stunting. Nutr Rev. 2019;77(4):240–253. doi: 10.1093/nutrit/nuy068.
  • Ahmed T, Auble D, Berkley JA, et al. An evolving perspective about the origins of childhood undernutrition and nutritional interventions that includes the gut microbiome. Ann N Y Acad Sci. 2014;1332(1):22–38. doi: 10.1111/nyas.12487.
  • Tickell KD, Atlas HE, Walson JL. Environmental enteric dysfunction: a review of potential mechanisms, con­sequences and management strategies. BMC Med. 2019;17(1):181. doi: 10.1186/s12916-019-1417-3.
  • Kosek MN, Causal pathways from enteropathogens to environmental enteropathy: findings from the MAL-ED birth cohort study. EBioMedicine. 2017;18:109–117. Apr doi: 10.1016/j.ebiom.2017.02.024.
  • McGrath CJ, Arndt MB, Walson JL. Biomarkers to stratify risk groups among children with malnutrition in resource-limited settings and to monitor response to intervention. Horm Res Paediatr. 2017;88(1):111–117. doi: 10.1159/000471875.
  • Syed S, Ali A, Duggan C. Environmental enteric dysfunction in children. J Pediatr Gastroenterol Nutr. 2016;63(1):6–14. doi: 10.1097/MPG.0000000000001147.
  • Braun TP, Marks DL. Pathophysiology and treatment of inflammatory anorexia in chronic disease. J Cachexia Sarcopenia Muscle. 2010;1(2):135–145. doi: 10.1007/s13539-010-0015-1.
  • Nataro JP, Guerrant RL. Chronic consequences on human health induced by microbial pathogens: growth faltering among children in developing countries. Vaccine. 2017;35(49 Pt A):6807–6812. doi: 10.1016/j.vaccine.2017.05.035.
  • Action Against Hunger and United Nations’ Childrens’ Funds. ‘WASH’ Nutrition A Practical Guidebook on Increasing Nutritional Impact Through Integration of WASH and Nutrition Programmes’, Paris, 2017.
  • Humphrey JH, Mbuya MNN, Ntozini R, et al. Independent and combined effects of improved water, sanitation, and hygiene, and improved complementary feeding, on child stunting and anaemia in rural Zimbabwe: a cluster-randomised trial. Lancet Glob Health. 2019;7(1):e132–e147. doi: 10.1016/S2214-109X(18)30374-7.
  • Bhutta ZA, Das JK, Rizvi A, et al. Evidence-based interventions for improvement of maternal and child nutrition: what can be done and at what cost? Lancet. 2013;382(9890):452–477. doi: 10.1016/S0140-6736(13)60996-4.
  • Dangour AD, Watson L, Cumming O, et al. Interventions to improve water quality and supply, sanitation and hygiene practices, and their effects on the nutritional status of children. Cochrane Database Syst Rev. 2013;8:CD009382. doi: 10.1002/14651858.CD009382.pub2.
  • Rianda D, Suradijono SHR, Setiawan EA, et al. Long-term benefits of probiotics and calcium supplementation during childhood, and other biomedical and socioenvironmental factors, on adolescent neurodevelopmental outcomes. J Funct Foods. 2022;91:105014. doi: 10.1016/j.jff.2022.105014.
  • Sheridan PO, Bindels LB, Saulnier DM, et al. Can prebiotics and probiotics improve therapeutic outcomes for undernourished individuals? Gut Microbes. 2014;5(1):74–82. doi: 10.4161/gmic.27252.
  • Stavrou G, Kotzampassi K. Gut microbiome, surgical complications and probiotics. Ann Gastroenterol. 2017;30(1):45–53. doi: 10.20524/aog.2016.0086.
  • Wieërs G, Belkhir L, Enaud R, et al. How probiotics affect the microbiota. Front Cell Infect Microbiol. 2019;9:454. doi: 10.3389/fcimb.2019.00454.
  • Glover LE, Lee JS, Colgan SP. Oxygen metabolism and barrier regulation in the intestinal mucosa. J Clin Invest. 2016;126(10):3680–3688. doi: 10.1172/JCI84429.
  • Ahluwalia B, Magnusson MK, Öhman L. Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad. Scand J Gastroenterol. 2017;52(11):1185–1193. doi: 10.1080/00365521.2017.1349173.
  • Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, et al. Mechanisms of action of probiotics. Adv Nutr. 2019;10(suppl_1):S49–S66. doi: 10.1093/advances/nmy063.
  • van Zyl WF, Deane SM, Dicks LMT. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes. 2020;12(1):1831339. doi: 10.1080/19490976.2020.1831339.
  • Liu Q, Yu Z, Tian F, et al. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb Cell Fact. 2020;19(1):23. doi: 10.1186/s12934-020-1289-4.
  • Monteagudo-Mera A, Rastall RA, Gibson GR, et al. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl Microbiol Biotechnol. 2019;103(16):6463–6472. doi: 10.1007/s00253-019-09978-7.
  • Tuo Y, Song X, Song Y, et al. Screening probiotics from lactobacillus strains according to their abilities to inhibit pathogen adhesion and induction of pro-inflammatory cytokine IL-8. J Dairy Sci. 2018;101(6):4822–4829. Jun doi: 10.3168/JDS.2017-13654.
  • Markowiak-Kopeć P, Śliżewska K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients. 2020;12(4):1107. doi: 10.3390/nu12041107.
  • Kovanda L, Zhang W, Wei X, et al. In vitro antimicrobial activities of organic acids and their derivatives on several species of gram-negative and gram-positive bacteria. Molecules. 2019;24(20):3770. doi: 10.3390/molecules24203770.
  • Mousavi Khaneghah A, Abhari K, Eş I, et al. Interactions between probiotics and pathogenic microorganisms in hosts and foods: a review. Trends Food Sci Technol. 2020;95:205–218. Jan doi: 10.1016/j.tifs.2019.11.022.
  • Li J, Sung CYJ, Lee N, et al. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc. Natl. Acad. Sci. U.S.A. 2016;113(9):1306–1315. doi: 10.1073/pnas.1518189113.
  • den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–2340. doi: 10.1194/jlr.R036012.
  • Fernandes J, Su W, Rahat-Rozenbloom S, et al. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes. 2014;4(6):e121–e121. doi: 10.1038/NUTD.2014.23.
  • Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol. 2020;11:25. doi: 10.3389/FENDO.2020.00025/BIBTEX.
  • Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017;20(2):145–155. doi: 10.1038/nn.4476.
  • Puddu A, Sanguineti R, Montecucco F, et al. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators Inflamm. 2014;2014:162021–162029. doi: 10.1155/2014/162021.
  • Ma Q, Xing C, Long W, et al. Impact of microbiota on Central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation. 2019;16(1):53. doi: 10.1186/S12974-019-1434-3.
  • Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158. doi: 10.1126/scitranslmed.3009759.
  • Gautier EL, Shay T, Miller J, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol. 2012;13(11):1118–1128. doi: 10.1038/ni.2419.
  • Cerovic M, Forloni G, Balducci C. Neuroinflammation and the gut microbiota: possible alternative therapeutic targets to counteract alzheimer’s disease? Front Aging Neurosci. 2019;11:284. doi: 10.3389/fnagi.2019.00284.
  • Yamawaki Y, Yoshioka N, Nozaki K, et al. Sodium butyrate abolishes lipopolysaccharide-induced depression-like behaviors and hippocampal microglial activation in mice. Brain Res. 2018;1680:13–38. doi: 10.1016/j.brainres.2017.12.004.
  • Soliman ML, Puig KL, Combs CK, et al. Acetate reduces microglia inflammatory signaling in vitro. J Neurochem. 2012;123(4):555–567. doi: 10.1111/j.1471-4159.2012.07955.x.
  • Savignac HM, Corona G, Mills H, et al. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochem Int. 2013;63(8):756–764. doi: 10.1016/j.neuint.2013.10.006.
  • Moens F, Van den Abbeele P, Basit AW, et al. A four-strain probiotic exerts positive immunomodulatory effects by enhancing colonic butyrate production in vitro. Int J Pharm. 2019;555:1–10. doi: 10.1016/j.ijpharm.2018.11.020.
  • Varela RB, Valvassori SS, Lopes-Borges J, et al. Sodium butyrate and mood stabilizers block ouabain-induced hyperlocomotion and increase BDNF, NGF and GDNF levels in brain of Wistar rats. J Psychiatr Res. 2015;61:114–121. doi: 10.1016/j.jpsychires.2014.11.003.
  • Yan J, Charles JF. Gut microbiota and IGF-1. Calcif Tissue Int. 2018;102(4):406–414. doi: 10.1007/s00223-018-0395-3.
  • Milman S, Huffman DM, Barzilai N. The somatotropic axis in human aging: framework for the current state of knowledge and future research. Cell Metab. 2016;23(6):980–989. doi: 10.1016/j.cmet.2016.05.014.
  • Wrigley S, Arafa D, Tropea D. Insulin-like growth factor 1: at the crossroads of brain development and aging. Front Cell Neurosci. 2017;11:14. doi: 10.3389/fncel.2017.00014.
  • Xing C, Yin Y, Chang R, et al. Effects of insulin-like growth factor 1 on synaptic excitability in cultured rat hippocampal neurons. Exp Neurol.2007;205(1):222–229. doi: 10.1016/j.expneurol.2007.01.029.
  • Cao Z, Min J, Tan Q, et al. Circulating insulin-like growth factor-1 and brain health: evidence from 369,711 participants in the UK Biobank. Alzheimers Res Ther. 2023;15(1):140. doi: 10.1186/s13195-023-01288-5.
  • Yuan T, Ying J, Jin L, et al. The role of serum growth hormone and insulin-like growth factor-1 in adult humans brain morphology. Aging. 2020;12(2):1377–1396. doi: 10.18632/aging.102688.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.