720
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Proteomic analysis by 4D label-free MS-PRM identified that Nptx1, Ptpmt1, Slc25a11, and Cpt1c are involved in diabetes-associated cognitive dysfunction

, , & ORCID Icon
Received 25 Oct 2023, Accepted 02 Dec 2023, Published online: 15 Dec 2023

References

  • Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):6275.
  • Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–281. doi: 10.1016/j.diabres.2018.02.023.
  • Tripathi PN, Srivastava P, Sharma P, et al. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg Chem. 2019;85:82–96. doi: 10.1016/j.bioorg.2018.12.017.
  • American Diabetes A. 12. Older adults: standards of medical care in diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S168–S79.
  • Biessels GJ, Nobili F, Teunissen CE, et al. Understanding multifactorial brain changes in type 2 diabetes: a biomarker perspective. Lancet Neurol. 2020;19(8):699–710. doi: 10.1016/S1474-4422(20)30139-3.
  • Hayman LA, Fuller GN, Cavazos JE, et al. The hippocampus: normal anatomy and pathology. AJR Am J Roentgenol. 1998;171(4):1139–1146. doi: 10.2214/ajr.171.4.9763010.
  • Rocca MA, Barkhof F, De Luca J, et al. The hippocampus in multiple sclerosis. Lancet Neurol. 2018;17(10):918–926. doi: 10.1016/S1474-4422(18)30309-0.
  • Tang W, Li Y, He S, et al. Caveolin-1 alleviates diabetes-associated cognitive dysfunction through modulating neuronal Ferroptosis-Mediated mitochondrial homeostasis. Antioxid Redox Signal. 2022;37(13-15):867–886. doi: 10.1089/ars.2021.0233.
  • Jia L, Du Y, Chu L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. Lancet Public Health. 2020;5(12):e661–e71. doi: 10.1016/S2468-2667(20)30185-7.
  • Biessels GJ. Sweet memories: 20 years of progress in research on cognitive functioning in diabetes. Eur J Pharmacol. 2013;719(1-3):153–160. doi: 10.1016/j.ejphar.2013.04.055.
  • Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14(10):591–604. doi: 10.1038/s41574-018-0048-7.
  • Schmidt R, Launer LJ, Nilsson LG, et al. Magnetic resonance imaging of the brain in diabetes: the cardiovascular determinants of dementia (Cascade) study. Diabetes. 2004;53(3):687–692. doi: 10.2337/diabetes.53.3.687.
  • Wang T, Cai X, Li J, et al. Proteomics analysis in myocardium of spontaneously hypertensive rats. Sci Rep. 2023;13(1):276. doi: 10.1038/s41598-023-27590-8.
  • Aly KA, Moutaoufik MT, Phanse S, et al. From fuzziness to precision medicine: on the rapidly evolving proteomics with implications in mitochondrial connectivity to rare human disease. iScience. 2021;24(2):102030. doi: 10.1016/j.isci.2020.102030.
  • Long FQ, Kou CX, Li K, et al. MiR-223-3p inhibits rTp17-induced inflammasome activation and pyroptosis by targeting NLRP3. J Cell Mol Med. 2020;24(24):14405–14414. doi: 10.1111/jcmm.16061.
  • Zhao C, Zheng Z, Zhu S, et al. iTRAQ and PRM-Based comparative proteomic profiling of the hippocampus in rat models of epilepsy. J Integr Neurosci. 2023;22(1):21. doi: 10.31083/j.jin2201021.
  • Dubey SK, Rai SN, Singh VK, et al. Evaluation of pleurotus mushroom effects on histopathological changes in organs of diabetic rats. Dis Markers. 2023;2023:1520132–1520138. doi: 10.1155/2023/1520132.
  • Luo A, Xie Z, Wang Y, et al. Type 2 diabetes mellitus-associated cognitive dysfunction: advances in potential mechanisms and therapies. Neurosci Biobehav Rev. 2022;137:104642. doi: 10.1016/j.neubiorev.2022.104642.
  • Srivastava P, Tripathi PN, Sharma P, et al. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur J Med Chem. 2019;163:116–135. doi: 10.1016/j.ejmech.2018.11.049.
  • Ozkan A, Aslan MA, Sinen O, et al. Effects of adropin on learning and memory in rats tested in the morris water maze. Hippocampus. 2022;32(4):253–263. doi: 10.1002/hipo.23403.
  • Ross PL, Huang YN, Marchese JN, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004;3(12):1154–1169. doi: 10.1074/mcp.M400129-MCP200.
  • Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999;17(10):994–999. doi: 10.1038/13690.
  • Kang UB, Yeom J, Kim H, et al. Quantitative analysis of mTRAQ-labeled proteome using full MS scans. J Proteome Res. 2010;9(7):3750–3758. doi: 10.1021/pr9011014.
  • Schulze WX, Usadel B. Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol. 2010;61(1):491–516. doi: 10.1146/annurev-arplant-042809-112132.
  • Rai SN, Singh C, Singh A, et al. Mitochondrial dysfunction: a potential therapeutic target to treat alzheimer’s disease. Mol Neurobiol. 2020;57(7):3075–3088. doi: 10.1007/s12035-020-01945-y.
  • Omeis IA, Hsu YC, Perin MS. Mouse and human neuronal pentraxin 1 (NPTX1): conservation, genomic structure, and chromosomal localization. Genomics. 1996;36(3):543–545. doi: 10.1006/geno.1996.0503.
  • Schaukowitch K, Reese AL, Kim SK, et al. An intrinsic transcriptional program underlying synaptic scaling during activity suppression. Cell Rep. 2017;18(6):1512–1526. doi: 10.1016/j.celrep.2017.01.033.
  • Al Rahim M, Thatipamula S, Pasinetti GM, et al. Neuronal pentraxin 1 promotes Hypoxic-Ischemic neuronal injury by impairing mitochondrial biogenesis via interactions with active bax[6A7] and mitochondrial hexokinase II. ASN Neuro. 2021;13:17590914211012888. doi: 10.1177/17590914211012888.
  • Al Rahim M, Thatipamula S, Hossain MA. Critical role of neuronal pentraxin 1 in mitochondria-mediated hypoxic-ischemic neuronal injury. Neurobiol Dis. 2013;50:59–68. doi: 10.1016/j.nbd.2012.10.003.
  • Hooper AWM, Alamilla JF, Venier RE, et al. Neuronal pentraxin 1 depletion delays neurodegeneration and extends life in sandhoff disease mice. Hum Mol Genet. 2017;26(4):661–673. doi: 10.1093/hmg/ddw422.
  • Cummings DM, Benway TA, Ho H, et al. Neuronal and peripheral pentraxins modify glutamate release and may interact in blood-brain barrier failure. Cereb Cortex. 2017;27(6):3437–3448. doi: 10.1093/cercor/bhx046.
  • Clayton KB, Podlesniy P, Figueiro-Silva J, et al. NP1 regulates neuronal activity-dependent accumulation of BAX in mitochondria and mitochondrial dynamics. J Neurosci. 2012;32(4):1453–1466. doi: 10.1523/JNEUROSCI.4604-11.2012.
  • Abad MA, Enguita M, DeGregorio-Rocasolano N, et al. Neuronal pentraxin 1 contributes to the neuronal damage evoked by amyloid-beta and is overexpressed in dystrophic neurites in alzheimer’s brain. J Neurosci. 2006;26(49):12735–12747. doi: 10.1523/JNEUROSCI.0575-06.2006.
  • Zhang J, Guan Z, Murphy AN, et al. Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis. Cell Metab. 2011;13(6):690–700. doi: 10.1016/j.cmet.2011.04.007.
  • Xu QQ, Xiao FJ, Sun HY, et al. Ptpmt1 induced by HIF-2alpha regulates the proliferation and glucose metabolism in erythroleukemia cells. Biochem Biophys Res Commun. 2016;471(4):459–465. doi: 10.1016/j.bbrc.2016.02.053.
  • Zheng H, Yu WM, Shen J, et al. Mitochondrial oxidation of the carbohydrate fuel is required for neural precursor/stem cell function and postnatal cerebellar development. Sci Adv. 2018;4(10):eaat2681. doi: 10.1126/sciadv.aat2681.
  • Luongo TS, Eller JM, Lu MJ, et al. SLC25A51 is a mammalian mitochondrial NAD(+) transporter. Nature. 2020;588(7836):174–179. doi: 10.1038/s41586-020-2741-7.
  • Baulies A, Montero J, Matías N, et al. The 2-oxoglutarate carrier promotes liver cancer by sustaining mitochondrial GSH despite cholesterol loading. Redox Biol. 2018;14:164–177. doi: 10.1016/j.redox.2017.08.022.
  • Robinson AJ, Overy C, Kunji ER. The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc Natl Acad Sci U S A. 2008;105(46):17766–17771. doi: 10.1073/pnas.0809580105.
  • Datta A, Akatsu H, Heese K, et al. Quantitative clinical proteomic study of autopsied human infarcted brain specimens to elucidate the deregulated pathways in ischemic stroke pathology. J Proteomics. 2013;91:556–568. doi: 10.1016/j.jprot.2013.08.017.
  • Mukherjee S, Russell JC, Carr DT, et al. Systems biology approach to late-onset alzheimer’s disease genome-wide association study identifies novel candidate genes validated using brain expression data and Caenorhabditis elegans experiments. Alzheimers Dement. 2017;13(10):1133–1142. doi: 10.1016/j.jalz.2017.01.016.
  • Iborra-Lázaro G, Djebari S, Sánchez-Rodríguez I, et al. CPT1C is required for synaptic plasticity and oscillatory activity that supports motor, associative and non-associative learning. J Physiol. 2023;601(16):3533–3556. doi: 10.1113/JP284248.
  • Lee J, Wolfgang MJ. Metabolomic profiling reveals a role for CPT1c in neuronal oxidative metabolism. BMC Biochem. 2012;13(1):23. doi: 10.1186/1471-2091-13-23.
  • Virmani A, Pinto L, Bauermann O, et al. The carnitine palmitoyl transferase (CPT) system and possible relevance for neuropsychiatric and neurological conditions. Mol Neurobiol. 2015;52(2):826–836. doi: 10.1007/s12035-015-9238-7.
  • Ding Y, Zhang H, Liu Z, et al. Carnitine palmitoyltransferase 1 (CPT1) alleviates oxidative stress and apoptosis of hippocampal neuron in response to beta-Amyloid peptide fragment abeta(25-35). Bioengineered. 2021;12(1):5440–5449. doi: 10.1080/21655979.2021.1967032.
  • Trushina E, Nguyen TKO, Trushin S. Modulation of mitochondrial function as a therapeutic strategy for neurodegenerative diseases. J Prev Alzheimers Dis. 2023;10(4):675–685.