46
Views
0
CrossRef citations to date
0
Altmetric
Case Report

Efficacy of high thiamine dosage in treating patients with biotin thiamine responsive basal ganglia disease: a two case reports

ORCID Icon
Received 24 Aug 2023, Accepted 03 May 2024, Published online: 11 May 2024

References

  • Alfadhel M, Umair M, Almuzzaini B, et al. Targeted SLC19A3 gene sequencing of 3000 Saudi newborn: a pilot study toward newborn screening. Ann Clin Transl Neurol. 2019;6(10):2097–2103. doi: 10.1002/acn3.50898.
  • Ferreira CR, Whitehead MT, Leon E. Biotin-thiamine responsive basal ganglia disease: identification of a pyruvate peak on brain spectroscopy, novel mutation in SLC19A3, and calculation of prevalence based on allele frequencies from aggregated next-generation sequencing data. Am J Med Genet A. 2017;173(6):1502–1513. doi: 10.1002/ajmg.a.38189.
  • Tabarki B, Al-Hashem A, Alfadhel M, et al. Biotin-thiamine-responsive basal ganglia disease. In: Adam MP, Ardinger HH, Pagon RA, editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 2013. p. 1993–2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK169615/.
  • Wang J, Wang J, Han X, et al. Report of the largest Chinese cohort with SLC19A3 gene defect and literature review. Front Genet. 2021;12:683255. PMID: 34276785; PMCID: PMC8281341. doi: 10.3389/fgene.2021.683255.
  • Saini AG, Sharma S. Biotin-thiamine-responsive basal ganglia disease in children: a treatable neurometabolic disorder. Ann Indian Acad Neurol. 2021;24(2):173–177. PMID: 34220059; PMCID: PMC8232498. doi: 10.4103/aian.AIAN_952_20.
  • Ozand PT, Gascon GG, Al Essa M, et al. Biotin-responsive basal ganglia disease: a novel entity. Brain. 1998;121(7):1267–1279. doi: 10.1093/brain/121.7.1267.
  • Alfadhel M, Al-Bluwi A. Psychological assessment of patients with biotin-thiamine-responsive basal ganglia disease. Child Neurol Open. 2017;4:2329048X17730742. doi: 10.1177/2329048X17730742.
  • Algahtani H, Ghamdi S, Shirah B, et al. Biotin-thiamine-responsive basal ganglia disease: catastrophic consequences of delay in diagnosis and treatment. Neurol Res. 2017;39(2):117–125. Epub 2016/12/03PubMed PMID: 27905264. [PubMed] doi: 10.1080/01616412.2016.1263176.
  • Marcé-Grau A, Martí-Sánchez L, Baide-Mairena H, et al. Genetic defects of thiamine transport and metabolism: a review of clinical phenotypes, genetics, and functional studies. J Inherit Metab Dis. 2019;42(4):581–597. doi: 10.1002/jimd.12125.
  • Tallaksen CME, Sande A, Bøhmer T, et al. Kinetics of thiamin and thiamin phosphate esters in human blood, plasma and urine after 50 mg intravenously or orally. Eur J Clin Pharmacol. 1993;44(1):73–78. [Google Scholar]
  • Laird E, Molloy AM. Water-Soluble vitamins and essential nutrients. Ref. Modul. Biomed. Sci. 2014.
  • Donnino MW, Carney E, Cocchi MN, et al. Thiamine deficiency in critically ill patients with sepsis. J Crit Care. 2010;25(4):576–581.
  • Brown G. Defects of thiamine transport and metabolism. J Inherit Metab Dis. 2014;37(4):577–585. doi: 10.1007/s10545-014-9712-9.
  • Ortigoza-Escobar JD, Molero-Luis M, Arias A, et al. Free-thiamine is a potential biomarker of thiamine transporter-2 deficiency: a treatable cause of leigh syndrome. Brain. 2016;139(pt 1):31–38. doi: 10.1093/brain/awv342.
  • Camporeale G, Zempleni J. Biotin. In: Bowman BA, Russell RM, editors. Present knowledge in nutrition. International Life Sciences Institute; Washington, DC, USA; 2006. p. 314–326.
  • Dasgupta A. 2019). Biotin. In: Biotin and other interferences in immunoassays. 1st ed.; p. 37–49. Elsevier. doi: 10.1016/b978-0-12-816429-7.00003-4.
  • Subramanian VS, Marchant JS, Said HM. Biotin-responsive basal ganglia disease-linked mutations inhibit thiamine transport via hTHTR2: biotin is not a substrate for hTHTR2. Am J Physiol Cell Physiol. 2006;291(5):C851–C859. doi: 10.1152/ajpcell.00105.2006.
  • Martel JL, Kerndt CC, Doshi H, et al. Vitamin B1 (thiamine.) In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482360/.
  • Barnerias C, Saudubray JM, Touati G, et al. Pyruvate dehydrogenase complex deficiency: four neurological phenotypes with differing pathogenesis. Dev Med Child Neurol. 2010;52(2):e1–e9. doi: 10.1111/j.1469-8749.2009.03541.x.
  • Meador K, Loring D, Nichols M, et al. Preliminary findings of high-dose thiamine in dementia of Alzheimer’s type. J Geriatr Psychiatry Neurol. 1993;6(4):222–229. doi: 10.1177/089198879300600408.
  • Nolan KA, Black RS, Sheu KF, et al. A trial of thiamine in Alzheimer’s disease. Arch Neurol. 1991;48(1):81–83. doi: 10.1001/archneur.1991.00530130093025.
  • Kono S, Miyajima H, Yoshida K, et al. Mutations in a thiamine-transporter gene and Wernicke’s-like encephalopathy. N Engl J Med. 2009;360(17):1792–1794. [PubMed] [Google Scholar] doi: 10.1056/NEJMc0809100.
  • Tabarki B, Al-Shafi S, Al-Shahwan S, et al. Biotin-responsive basal ganglia disease revisited: clinical, radiologic, and genetic findings. Neurology. 2013;80(3):261–267. [PubMed] [Google Scholar] doi: 10.1212/WNL.0b013e31827deb4c.
  • Alabdulqader MA, Al Hajjaj S. Biotin-Thiamine-Responsive basal ganglia disease: case report and Follow-Up of a patient with poor compliance. Child Neurol Open. 2018;5:2329048X18773218. doi: 10.1177/2329048X18773218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.