1,269
Views
19
CrossRef citations to date
0
Altmetric
Articles

Data-driven cloud simulation architecture for automated flexible production lines: application in real smart factories

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 3751-3773 | Received 25 Mar 2020, Accepted 01 May 2021, Published online: 31 May 2021

References

  • Ahmadi, A., A. H. Sodhro, C. Cherifi, V. Cheutet, and Y. Ouzrout. 2019. Evolution of 3C Cyber-Physical Systems Architecture for Industry 4.0: Proceedings of SOHOMA 2018.
  • Alvarez-Miranda, E., S. Chace, and J. Pereira. 2020. “Assembly Line Balancing with Parallel Workstations.” International Journal of Production Research, 1–21. doi:https://doi.org/10.1080/00207543.2020.1818000.
  • Barutcuoglu, S., and M. Azizoglu. 2011. “Flexible Assembly Line Design Problem with Fixed Number of Workstations.” International Journal of Production Research 49 (12): 3691–3714. doi: https://doi.org/10.1080/00207543.2010.492410
  • Biel, K., and C. H. Glock. 2018. “Governing the Dynamics of Multi-Stage Production Systems Subject to Learning and Forgetting Effects: A Simulation Study.” International Journal of Production Research 56 (10): 3439–3461.
  • Booch, G. 2005. The Unified Modeling Language User Guide. Massachusetts: Pearson Education India.
  • Borisovsky, P. A., X. Delorme, and A. Dolgui. 2014. “Balancing Reconfigurable Machining Lines via a set Partitioning Model.” International Journal of Production Research 52 (13): 4026–4036. doi: https://doi.org/10.1080/00207543.2013.849857
  • Celik, N., S. Lee, K. Vasudevan, and Y. J. Son. 2010. “DDDAS-Based Multi-Fidelity Simulation Framework for Supply Chain Systems.” IIE Transactions 42 (5): 325–341. doi: https://doi.org/10.1080/07408170903394306
  • Celik, N., and Y. J. Son. 2012. “Sequential Monte Carlo-Based Fidelity Selection in Dynamic-Data-Driven Adaptive Multi-Scale Simulations.” International Journal of Production Research 50 (3): 843–865. doi: https://doi.org/10.1080/00207543.2010.545445
  • Chen, T., and C. Lin. 2017. “Estimating the Simulation Workload for Factory Simulation as a Cloud Service.” Journal of Intelligent Manufacturing 28 (5): 1139–1157. doi: https://doi.org/10.1007/s10845-015-1068-y
  • Chen, H., G. Liu, H. Tu, A. Wang, and R. Ning. 2014. “Data-Driven Rapid Modeling of Manufacturing System.” Journal of Hebei University of Science and Technology 35 (6): 504–511.
  • Chi, X., M. P. Pepper, and T. A. Spedding. 2004. “A Web-Based Virtual Factory and Simulator for Industrial Statistics.” Proceedings of the 2004 Winter Simulation Conference. Washington, DC: IEEE .
  • Colledani, M., G. Pedrielli, W. Terkaj, and M. Urgo. 2013. “Integrated Virtual Platform for Manufacturing Systems Design.” Procedia CIRP 7: 425–430. doi: https://doi.org/10.1016/j.procir.2013.06.010
  • D’Angelo, G., and M. Marzolla. 2014. “New Trends in Parallel and Distributed Simulation: From Many-Cores to Cloud Computing.” Simulation Modelling Practice and Theory 49: 320–335. doi: https://doi.org/10.1016/j.simpat.2014.06.007
  • ElMaraghy, A. H. 2009. “Focused Flexibility in Production Systems.” In Changeable and Reconfigurable Manufacturing Systems, edited by W. Terkaj, T. Tolio, and A. Valente, 47–66. London: Springer.
  • Fournier, J. 2011. “Model Building with Core Manufacturing Simulation Data.” Proceedings of the 2011 Winter Simulation Conference. Phoenix Arizona: IEEE .
  • Gliwice, P. 2012. “Data-Driven Modelling and Simulation for Introduction of Production Planning.” 119–122. Institute of Engineering Processes Automation and Integrated Manufacturing Systems.
  • He, C., Z. Guan, and Y. Cui. 2017. “Rule-Guided Tabu Search Algorithm for an Automated Flexible Machining Line Balancing and Configuration Problem.” Proceedings of the 2017 International Conference on Industrial Design Engineering. Bandung: ACM .
  • He, C., Z. Guan, Y. Gong, C. Wang, and L. Yue. 2019. “Automated Flexible Transfer Line Design Problem: Sequential and Reconfigurable Stages with Parallel Machining Cells.” Journal of Manufacturing Systems 52: 157–171. doi: https://doi.org/10.1016/j.jmsy.2019.05.005
  • He, C., Z. Guan, D. Luo, W. Fang, and S. Ullah. 2019. “Decomposition Heuristic for Parallel-Machine Transfer Line Design with Dual-Uncertainties-Based Chance Constraints.” Engineering Optimization 51 (2): 199–216. doi: https://doi.org/10.1080/0305215X.2018.1457656
  • He, C., Z. Guan, H. Wang, Y. Cui, and W. Chen. 2018. “Branch and Bound Algorithm for Balancing and Configuration of an Automated Flexible Machining Line.” AIP Conference Proceedings. Sapporo: AIP .
  • He, C., Z. Guan, G. Xu, L. Yue, and S. Ullah. 2019. “Scenario-based Robust Dominance Criteria for Multi-Objective Automated Flexible Transfer Line Balancing Problem Under Uncertainty.” International Journal of Production Research 58 (2): 1–20.
  • He, C., Z. Guan, L. Yue, and S. Ullah. 2018. “Set-Partitioning-Based Heuristic for Balancing and Configuration of Automated Flexible Machining Line.” International Journal of Production Research 56 (7): 1–21.
  • Huo, J., J. Zhang, and F. T. S. Chan. 2020. “A Fuzzy Control System for Assembly Line Balancing with a Three-State Degradation Process in the Era of Industry 4.0.” International Journal of Production Research 58 (23): 1–18. doi: https://doi.org/10.1080/00207543.2020.1844333
  • Jie, Y. 2009. “Data Driven Modeling and Simulation Technology of Automobile General Assembly Line Production.” Huazhong University of Science and Technology.
  • Jung, W. K., H. Kim, Y. C. Park, J. W. Lee, and E. S. Suh. 2020. “Real-Time Data-Driven Discrete-Event Simulation for Garment Production Lines.” Production Planning and Control. doi:https://doi.org/10.1080/09537287.
  • Kádár, B., W. Terkaj, and M. Sacco. 2013. “Semantic Virtual Factory Supporting Interoperable Modelling and Evaluation of Production Systems.” CIRP Annals 62 (1): 443–446. doi: https://doi.org/10.1016/j.cirp.2013.03.045
  • Khadr, M., and A. Schlenkhoff. 2018. “Data-Driven Stochastic Modeling for Multi-Purpose Reservoir Simulation.” Journal of Applied Water Engineering and Research 6 (1): 40–47. doi: https://doi.org/10.1080/23249676.2016.1209439
  • Koyuncu, N., S. Lee, K. K. Vasudevan, Y. J. Son, and P. Sarfare. 2007. “DDDAS-Based Multi-Fidelity Simulation for Online Preventive Maintenance Scheduling in Semiconductor Supply Chain.” 2007 Winter Simulation Conference. Washington: IEEE .
  • Lee, Y. T., and Y. Luo. 2005. “Data Exchange for Machine Shop Simulation.” Proceedings of the 37th Conference on Winter Simulation. Orlando: Winter Simulation Conference .
  • Lemessi, M., S. Rehbein, G. Rehn, and T. Schulze. 2012. “Semi-Automatic Simulation-Based Bottleneck Detection Approach.” Proceedings of the 2012 Winter Simulation Conference (WSC). Berlin: IEEE .
  • Li, G., Z. Bie, Y. Kou, J. Jiang, and M. Bettinelli. 2016. “Reliability Evaluation of Integrated Energy Systems Based on Smart Agent Communication.” Applied Energy 167: 397–406. doi: https://doi.org/10.1016/j.apenergy.2015.11.033
  • Li, L., Q. Chang, and J. Ni. 2009. “Data Driven Bottleneck Detection of Manufacturing Systems.” International Journal of Production Research 47 (18): 5019–5036. doi: https://doi.org/10.1080/00207540701881860
  • Li, L., Q. Chang, J. Ni, G. Xiao, and S. Biller. 2007. “Bottleneck Detection of Manufacturing Systems using Data Driven Method.” 2007 IEEE International Symposium on Assembly and Manufacturing. Ann Arbor: IEEE .
  • Lindskog, E., J. Berglund, J. Vallhagen, R. Berlin, and B. Johansson. 2012. “Combining Point Cloud Technologies with Discrete Event Simulation.” Proceedings of the Winter Simulation Conference. Berlin: Winter Simulation Conference .
  • Liu, X., J. Chen, and A. Li. 2019. “Optimisation of Line Configuration and Balancing for Reconfigurable Transfer Lines Considering Demand Uncertainty.” International Journal of Production Research 59 (2): 444–466.
  • Liu, W. K., G. Karniadakis, S. Tang, and J. Yvonnet. 2019. “A Computational Mechanics Special Issue on: Data-Driven Modeling and Simulation – Theory, Methods, and Applications.” Computational Mechanics 64: 275–277.
  • Lung, C. H., J. K. Cochran, G. T. Mackulak, and J. E. Urban. 1994. “Computer Simulation Software Reuse by Generic/Specific Domain Modeling Approach.” International Journal of Software Engineering and Knowledge Engineering 4 (1): 81–102. doi: https://doi.org/10.1142/S0218194094000052
  • Luo, D. 2017. “Data Driven Modeling Simulation and Optimization of Logistics System for Auto Parts Dispatching in Final Assembly.” Huazhong University of Science and Technology.
  • Mackulak, G. T., and P. Savory. 2001. “A Simulation-Based Experiment for Comparing AMHS Performance in a Semiconductor Fabrication Facility.” IEEE Transactions on Semiconductor Manufacturing 14 (3): 273–280. doi: https://doi.org/10.1109/66.939828
  • Meng, C., S. S. Nageshwaraniyer, A. Maghsoudi, Y. J. Son, and S. Dessureault. 2013. “Data-Driven Modeling and Simulation Framework for Material Handling Systems in Coal Mines.” Computers and Industrial Engineering 64 (3): 766–779. doi: https://doi.org/10.1016/j.cie.2012.12.017
  • Merkuryeva, G., and V. Bolshakovs. 2010. “Vehicle Schedule Simulation with AnyLogic.” 12th International Conference on Computer Modelling and Simulation. Brisbane: IEEE .
  • Petronijević, J., M. Petrović, N. Vuković, M. Mitić, B. Babić, and Z. Miljković. 2016. “Integrated Process Planning and Scheduling Using Multi-Agent Methodology.” In Applied Mechanics and Materials, Vol. 834, 193–198. Trans Tech Publications.
  • Qiao, G. 2003. “Data Driven Design and Simulation Based on XML.” Winter Simulation Conference . New Orleans.
  • Tao, F., F. Sui, A. Liu, Q. Qi, M. Zhang, B. Song, Z. Guo, S. C. Y. Lu, and A. Nee. 2019. “Digital Twin-Driven Product Design Framework.” International Journal of Production Research 57 (12): 3935–3953. doi: https://doi.org/10.1080/00207543.2018.1443229
  • Tolio, T., M. Sacco, W. Terkaj, and M. Urgo. 2013. “Virtual Factory: An Integrated Framework for Manufacturing Systems Design and Analysis.” Procedia CIRP 7: 25–30. doi: https://doi.org/10.1016/j.procir.2013.05.005
  • Urbina Coronado, P. D., R. Lynn, W. Louhichi, M. Parto, E. Wescoat, and T. Kurfess. 2018. “Part Data Integration in the Shop Floor Digital Twin: Mobile and Cloud Technologies to Enable a Manufacturing Execution System.” Journal of Manufacturing Systems 48: 25–33. S027861251830013X. doi: https://doi.org/10.1016/j.jmsy.2018.02.002
  • Wang, X., Y. Wang, F. Tao, and A. Liu. 2020. “New Paradigm of Data-Driven Smart Customisation Through Digital Twin.” Journal of Manufacturing Systems 58: 270–280.
  • Wang, G., Y. Yan, R. Ning, and A. Wang. 2009. “Simulation Modeling Approach Based on Data-Driven and Modular Control Model for Production System.” Journal of System Simulation 21 (14): 4224–4230.
  • Wy, J., S. Jeong, B. I. Kim, J. Park, J. Shin, H. Yoon, and S. Lee. 2011. “A Data-Driven Generic Simulation Model for Logistics-Embedded Assembly Manufacturing Lines.” Computers and Industrial Engineering 60 (1): 138–147. doi: https://doi.org/10.1016/j.cie.2010.10.011
  • Yu, Y., R. Q. Cao, and D. Schniederjans. 2017. “Cloud Computing and Its Impact on Service Level: A Multi-Agent Simulation Model.” International Journal of Production Research 55 (15): 4341–4353. doi: https://doi.org/10.1080/00207543.2016.1251624
  • Zeng, Q., Q. Zhang, and Z. Yang. 2015. “A Dynamic Data-Driven Application Simulation Model for Oil Spill Emergency Decision in Port Water Area.” Transport 30 (4): 406–410. doi: https://doi.org/10.3846/16484142.2013.818056
  • Zhang, L., C. Huang, L. Wang, E. Zhao, and W. Gao. 2019. “Data-Driven Modeling and Simulation of Complex Multistation Manufacturing Process for Dimensional Variation Analysis.” International Journal of Modeling Simulation & Entific Computing 10 (3): 28–42.
  • Zhou, G., J. He, Z. Li, and W. Cheng. 2019. “A Data- and Knowledge-Driven Framework for Digital Twin Manufacturing Cell.” Procedia CIRP 83: 345–350. doi: https://doi.org/10.1016/j.procir.2019.04.084
  • Zhou, L., L. Zhang, L. Ren, and J. Wang. 2019. “Real-Time Scheduling of Cloud Manufacturing Services Based on Dynamic Data-Driven Simulation.” IEEE Transactions on Industrial Informatics 15: 5042–5051. doi: https://doi.org/10.1109/TII.2019.2894111

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.