507
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A multi-level modelling and fidelity evaluation method of digital twins for creating smart production equipment in Industry 4.0

, , , , , & show all
Pages 3671-3689 | Received 01 Jun 2022, Accepted 02 Aug 2023, Published online: 17 Aug 2023

References

  • Armendia, M., F. Cugnon, L. Berglind, E. Ozturk, G. Gil, and J. Selmi. 2019. “Evaluation of Machine Tool Digital Twin for Machining Operations in Industrial Environment.” Procedia CIRP 82: 231–236. https://doi.org/10.1016/j.procir.2019.04.040.
  • Bao, J., D. Guo, J. Li, and J. Zhang. 2019. “The Modelling and Operations for the Digital Twin in the Context of Manufacturing.” Enterprise Information Systems 13 (4): 534–556. https://doi.org/10.1080/17517575.2018.1526324.
  • Ding, K., T. S. Chan Felix, X. Zhang, G. Zhou, and F. Zhang. 2019. “Defining a Digital Twin-Based Cyber-Physical Production System for Autonomous Manufacturing in Smart Shop Floors.” International Journal of Production Research 57 (20): 6315–6334. https://doi.org/10.1080/00207543.2019.1566661.
  • Ghosh, A., A. M. M. Sharif Ullah, R. Teti, and A. Kubo. 2021. “Developing Sensor Signal-Based Digital Twins for Intelligent Machine Tools.” Journal of Industrial Information Integration 24: 100242. https://doi.org/10.1016/j.jii.2021.100242.
  • Glaessgen, E. H., and D. S. Stargel. 2012. “The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles.” Paper Presented at the IAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawall. https://doi.org/10.2514/6.2012-1818
  • Grieves, M., and J. Vickers. 2017. “Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems.” In Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches, edited by Franz-Josef Kahlen, Shannon Flumerfelt, and Anabela Alves, 85–113. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-38756-7_4
  • Hannelius, T., M. Salmenpera, and S. Kuikka. 2008. “Roadmap to Adopting OPC UA.” Paper Presented at the 2008 6th IEEE International Conference on Industrial Informatics, 13–16 July 2008. https://doi.org/10.1109/INDIN.2008.4618203
  • Hassan, M., A. Sadek, and M. H. Attia. 2021. “Novel Sensor-Based Tool Wear Monitoring Approach for Seamless Implementation in High Speed Milling Applications.” CIRP Annals 70 (1): 87–90. https://doi.org/10.1016/j.cirp.2021.03.024.
  • Huang, S., G. Wang, and Y. Yan. 2022. “Building Blocks for Digital Twin of Reconfigurable Machine Tools from Design Perspective.” International Journal of Production Research 60 (3): 942–956. https://doi.org/10.1080/00207543.2020.1847340.
  • Jiang, H., S. Qin, J. Fu, J. Zhang, and G. Ding. 2021. “How to Model and Implement Connections Between Physical and Virtual Models for Digital Twin Application.” Journal of Manufacturing Systems 58: 36–51. https://doi.org/10.1016/j.jmsy.2020.05.012.
  • Laamarti, F., H. F. Badawi, Y. Ding, F. Arafsha, B. Hafidh, and A. E. Saddik. 2020. “An ISO/IEEE 11073 Standardized Digital Twin Framework for Health and Well-Being in Smart Cities.” IEEE Access 8 (1): 105950–61. https://doi.org/10.1109/ACCESS.2020.2999871.
  • Leng, J., M. Zhou, Y. Xiao, H. Zhang, Q. Liu, W. Shen, Q. Su, and L. Li. 2021. “Digital Twins-Based Remote Semi-Physical Commissioning of Flow-Type Smart Manufacturing Systems.” Journal of Cleaner Production 306: 127278. https://doi.org/10.1016/j.jclepro.2021.127278.
  • Li, X., L. Wang, C. Zhu, and Z. Liu. 2021. “Framework for Manufacturing-Tasks Semantic Modelling and Manufacturing-Resource Recommendation for Digital Twin Shop-Floor.” Journal of Manufacturing Systems 58: 281–292. https://doi.org/10.1016/j.jmsy.2020.08.003.
  • Li, Y., J. Zhao, and H. H. Zhang. 2019. “Prediction of the Machined Surface Quality of Ball-end Milling of H13 die Steel Using MLBP Method.” Machining Science and Technology 23 (5): 794–823. https://doi.org/10.1080/10910344.2019.1636260.
  • Li, J., G. Zhou, and C. Zhang. 2022. “A Twin Data and Knowledge-Driven Intelligent Process Planning Framework of Aviation Parts.” International Journal of Production Research 60 (17): 1–18. https://doi.org/10.1080/00207543.2021.1951869.
  • Liu, S., J. Bao, Y. Lu, J. Li, S. Lu, and X. Sun. 2021. “Digital Twin Modeling Method Based on Biomimicry for Machining Aerospace Components.” Journal of Manufacturing Systems 58: 180–195. https://doi.org/10.1016/j.jmsy.2020.04.014.
  • Liu, K., L. Song, W. Han, Y. Cui, and Y. Wang. 2022a. “Time-varying Error Prediction and Compensation for Movement Axis of CNC Machine Tool Based on Digital Twin.” IEEE Transactions on Industrial Informatics 18 (1): 109–118. https://doi.org/10.1109/TII.2021.3073649.
  • Liu, S., Y. Sun, P. Zheng, Y. Lu, and J. Bao. 2022b. “Establishing a Reliable Mechanism Model of the Digital Twin Machining System: An Adaptive Evaluation Network Approach.” Journal of Manufacturing Systems 62: 390–401. https://doi.org/10.1016/j.jmsy.2021.12.008.
  • Lu, Y., X. Huang, K. Zhang, S. Maharjan, and Y. Zhang. 2021. “Communication-Efficient Federated Learning for Digital Twin Edge Networks in Industrial IoT.” IEEE Transactions on Industrial Informatics 17 (8): 5709–5718. https://doi.org/10.1109/TII.2020.3010798.
  • Luo, W., T. Hu, Y. Ye, C. Zhang, and Y. Wei. 2020. “A Hybrid Predictive Maintenance Approach for CNC Machine Tool Driven by Digital Twin.” Robotics and Computer-Integrated Manufacturing 65: 101974. https://doi.org/10.1016/j.rcim.2020.101974.
  • Ma, S., W. Ding, Y. Liu, S. Ren, and H. Yang. 2022. “Digital Twin and big Data-Driven Sustainable Smart Manufacturing Based on Information Management Systems for Energy-Intensive Industries.” Applied Energy 326: 119986. https://doi.org/10.1016/j.apenergy.2022.119986.
  • Qi, Q., X. Jiang, and P. J. Scott. 2012. “Knowledge Modeling for Specifications and Verification in Areal Surface Texture.” Precision Engineering 36 (2): 322–333. https://doi.org/10.1016/j.precisioneng.2011.12.002.
  • Qian, W., Y. Guo, K. Cui, P. Wu, W. Fang, and D. Liu. 2021. “Multidimensional Data Modeling and Model Validation for Digital Twin Workshop.” Journal of Computing and Information Science in Engineering 21 (3), https://doi.org/10.1115/1.4049634.
  • Qianzhe, Q., J. Wang, L. Ye, and R. X. Gao. 2019. “Digital Twin for Machining Tool Condition Prediction.” Procedia CIRP 81: 1388–1393. https://doi.org/10.1016/j.procir.2019.04.049.
  • Rahman, Mohd A. A., M. Mizukawa, D. Phaoharuhansa, and A. Shimada. 2013. “Modelling and Simulation of Robotic Systems Using SYSML.” International Journal of Modelling and Simulation 33 (3): 152–161. https://doi.org/10.2316/Journal.205.2013.3.205-5797.
  • Rong, K., H. Ding, X. Kong, R. Huang, and J. Tang. 2021. “Digital Twin Modeling for Loaded Contact Pattern-Based Grinding of Spiral Bevel Gears.” Advanced Engineering Informatics 49: 101305. https://doi.org/10.1016/j.aei.2021.101305.
  • Schroeder, G. N., C. Steinmetz, R. N. Rodrigues, R. V. B. Henriques, A. Rettberg, and C. E. Pereira. 2021. “A Methodology for Digital Twin Modeling and Deployment for Industry 4.0.” Proceedings of the IEEE 109 (4): 556–567. https://doi.org/10.1109/JPROC.2020.3032444.
  • Tan, J., X. Sha, B. Dai, and T. Lu. 2020. “Wireless Technology and Protocol for IIoT and Digital Twins.” Paper Presented at the 2020 ITU Kaleidoscope: Industry-Driven Digital Transformation (ITU K), 7–11 Dec. 2020. https://doi.org/10.23919/ITUK50268.2020.9303189
  • Tao, F., F. Sui, A. Liu, Q. Qi, M. Zhang, B. Song, Z. Guo, Stephen C. Y. Lu, and A. Y. C. Nee. 2019. “Digital Twin-Driven Product Design Framework.” International Journal of Production Research 57 (12): 3935–3953. https://doi.org/10.1080/00207543.2018.1443229.
  • Wagner, K. H., and S. McComb. 2020. “Optical Rectifying Linear Units for Back-Propagation Learning in a Deep Holographic Convolutional Neural Network.” IEEE Journal of Selected Topics in Quantum Electronics 26 (1): 1–18. https://doi.org/10.1109/JSTQE.2019.2946655.
  • Wang, B., F. Tao, X. Fang, C. Liu, Y. Liu, and T. Freiheit. 2021. “Smart Manufacturing and Intelligent Manufacturing: A Comparative Review.” Engineering 7 (6): 738–757. https://doi.org/10.1016/j.eng.2020.07.017.
  • Wei, Y., T. Hu, T. Zhou, Y. Ye, and W. Luo. 2021. “Consistency Retention Method for CNC Machine Tool Digital Twin Model.” Journal of Manufacturing Systems 58: 313–322. https://doi.org/10.1016/j.jmsy.2020.06.002.
  • Yang, X., Y. Ran, G. Zhang, H. Wang, Z. Mu, and S. Zhi. 2022. “A Digital Twin-Driven Hybrid Approach for the Prediction of Performance Degradation in Transmission Unit of CNC Machine Tool.” Robotics and Computer-Integrated Manufacturing 73: 102230. https://doi.org/10.1016/j.rcim.2021.102230.
  • Zhang, H., Q. Qi, and F. Tao. 2022. “A Multi-Scale Modeling Method for Digital Twin Shop-Floor.” Journal of Manufacturing Systems 62: 417–428. https://doi.org/10.1016/j.jmsy.2021.12.011.
  • Zhang, M., F. Tao, and A. Y. C. Nee. 2021. “Digital Twin Enhanced Dynamic Job-Shop Scheduling.” Journal of Manufacturing Systems 58: 146–156. https://doi.org/10.1016/j.jmsy.2020.04.008.
  • Zhang, C., G. Zhou, J. Hu, and J. Li. 2020a. “Deep Learning-Enabled Intelligent Process Planning for Digital Twin Manufacturing Cell.” Knowledge-Based Systems 191: 105247. https://doi.org/10.1016/j.knosys.2019.105247.
  • Zhang, C., G. Zhou, H. Li, and Y. Cao. 2020b. “Manufacturing Blockchain of Things for the Configuration of a Data- and Knowledge-Driven Digital Twin Manufacturing Cell.” IEEE Internet of Things Journal 7 (12): 11884–11894. https://doi.org/10.1109/JIOT.2020.3005729.
  • Zhang, C., G. Zhou, J. Li, F. Chang, K. Ding, and D. Ma. 2023. “A Multi-Access Edge Computing Enabled Framework for the Construction of a Knowledge-Sharing Intelligent Machine Tool Swarm in Industry 4.0.” Journal of Manufacturing Systems 66: 56–70. doi:10.1016/j.jmsy.2022.11.015.
  • Zhang, C., G. Zhou, Q. Lu, and F. Chang. 2017. “Graph-based Knowledge Reuse for Supporting Knowledge-Driven Decision-Making in new Product Development.” International Journal of Production Research 55 (23): 7187–7203. https://doi.org/10.1080/00207543.2017.1351643.
  • Zhang, Z., Z. Zhu, J. Zhang, and J. Wang. 2022. “Construction of Intelligent Integrated Model Framework for the Workshop Manufacturing System via Digital Twin.” The International Journal of Advanced Manufacturing Technology 118 (9): 3119–3132. https://doi.org/10.1007/s00170-021-08171-3.
  • Zhou, J., P. Li, Y. Zhou, B. Wang, J. Zang, and L. Meng. 2018. “Toward New-Generation Intelligent Manufacturing.” Engineering 4 (1): 11–20. https://doi.org/10.1016/j.eng.2018.01.002.
  • Zhou, X., X. Xu, W. Liang, Z. Zeng, S. Shimizu, L. T. Yang, and Q. Jin. 2022. “Intelligent Small Object Detection Based on Digital Twinning for Smart Manufacturing With Industrial Cyber-Physical Systems.” IEEE Transactions on Industrial Informatics 18 (2): 1377–1386. https://doi.org/10.1109/TII.2021.3061419.
  • Zhou, G., C. Zhang, Z. Li, K. Ding, and C. Wang. 2020. “Knowledge-driven Digital Twin Manufacturing Cell Towards Intelligent Manufacturing.” International Journal of Production Research 58 (4): 1034–1051. https://doi.org/10.1080/00207543.2019.1607978.
  • Zhuang, C., J. Gong, and J. Liu. 2021. “Digital Twin-Based Assembly Data Management and Process Traceability for Complex Products.” Journal of Manufacturing Systems 58: 118–131. https://doi.org/10.1016/j.jmsy.2020.05.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.