439
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

An exact method for machining lines design with equipment selection and line balancing

, ORCID Icon &
Pages 71-91 | Received 05 Feb 2023, Accepted 20 Nov 2023, Published online: 15 Dec 2023

References

  • Arcus, A. L. 1966. “COMSOAL: A Computer Method of Sequencing Operations for Assembly Lines.” International Journal of Production Research 4 (4): 259–277. https://doi.org/10.1080/00207546508919982
  • Askin, R. G., A. Dolgui, and J.-M. Proth. 2009. “Introduction to Design and Analysis of Production Systems.” International Journal of Production Economics 120 (2): 271–275.
  • Battaïa, O., D. Brissaud, A. Dolgui, and N. Guschinsky. 2015. “Variety-Oriented Design of Rotary Production Systems.” CIRP Annals 64 (1): 411–414.
  • Battaïa, O., and A. Dolgui. 2013. “A Taxonomy of Line Balancing Problems and Their Solution Approaches.” International Journal of Production Economics 142 (2): 259–277. https://doi.org/10.1016/j.ijpe.2012.10.020
  • Battaïa, O., and A. Dolgui. 2022. “Hybridizations in Line Balancing Problems: A Comprehensive Review on New Trends and Formulations.” International Journal of Production Economics, 250, 108673. https://doi.org/10.1016/j.ijpe.2022.108673.
  • Battaïa, O., A. Dolgui, and N. Guschinsky. 2012. “A Decision Support System for Design of Mass Production Machining Lines Composed of Stations with Rotary or Mobile Table.” Robotics and Computer-Integrated Manufacturing 28 (6): 672–680. https://doi.org/10.1016/j.rcim.2012.04.005
  • Battaïa, O., A. Dolgui, and N. Guschinsky. 2017a. “Decision Support for Design of Reconfigurable Rotary Machining Systems for Family Part Production.” International Journal of Production Research 55 (5): 1368–1385. https://doi.org/10.1080/00207543.2016.1213451
  • Battaïa, O., A. Dolgui, and N. Guschinsky. 2017b. “Integrated Process Planning and System Configuration for Mixed-Model Machining on Rotary Transfer Machine.” International Journal of Computer Integrated Manufacturing 30 (9): 910–925. https://doi.org/10.1080/0951192X.2016.1247989
  • Battaïa, O., A. Dolgui, and N. Guschinsky. 2020. “Optimal Cost Design of Flow Lines with Reconfigurable Machines for Batch Production.” International Journal of Production Research 58 (10): 2937–2952. https://doi.org/10.1080/00207543.2020.1716092
  • Battaïa, O., A. Dolgui, and N. Guschinsky. 2021. “Design of Reconfigurable Machining Lines: A Novel Comprehensive Optimisation Method.” CIRP Annals 70 (1): 393–398. https://doi.org/10.1016/j.cirp.2021.04.088
  • Battaïa, O., A. Dolgui, N. Guschinsky, and G. Levin. 2014a. “Combinatorial Techniques to Optimally Customize an Automated Production Line with Rotary Transfer and Turrets.” IIE Transactions 46: 867–879. https://doi.org/10.1080/0740817X.2013.849837
  • Battaïa, O., A. Dolgui, N. Guschinsky, and G. Levin. 2014b. “Integrated Configurable Equipment Selection and Line Balancing for Mass Production with Serial–Parallel Machining Systems.” Engineering Optimization 46 (10): 1369–1388. https://doi.org/10.1080/0305215X.2013.841904
  • Baybars, I. 1986. “A Survey of Exact Algorithms for the Simple Assembly Line Balancing.” Management Science 32 (8): 909–932. https://doi.org/10.1287/mnsc.32.8.909
  • Belmokhtar, S., A. Dolgui, N. Guschinsky, and G. Levin. 2006. “Integer Programming Models for Logical Layout Design of Modular Machining Lines.” Computers & Industrial Engineering 51 (3): 502–518. https://doi.org/10.1016/j.cie.2006.08.010
  • Borisovsky, P. A., X. Delorme, and A. Dolgui. 2013. “Genetic Algorithm for Balancing Reconfigurable Machining Lines.” Computers & Industrial Engineering 66 (3): 541–547. https://doi.org/10.1016/j.cie.2012.12.009
  • Borisovsky, P. A., X. Delorme, and A. Dolgui. 2014. “Balancing Reconfigurable Machining Lines Via a Set Partitioning Model.” International Journal of Production Research 52 (13): 4026–4036. https://doi.org/10.1080/00207543.2013.849857
  • Borisovsky, P., A. Dolgui, and S. Kovalev. 2012a. “Algorithms and Implementation of a Set Partitioning Approach for Modular Machining Line Design.” Computers & Operations Research 39 (12): 3147–3155. https://doi.org/10.1016/j.cor.2012.03.017
  • Borisovsky, P., A. Dolgui, and S. Kovalev. 2012b. “Modelling Transfer Line Design Problem Via a Set Partitioning Problem.” Optimization Letters 6 (5): 915–926. https://doi.org/10.1007/s11590-011-0317-z
  • Borisovsky, P, A Dolgui, and S Kovalev. 2012. “Modelling Transfer Line Design Problem Via a Set Partitioning Problem.” ” Optimization Letters 6 (5): 915–926.
  • Boysen, N., M. Fliedner, and A. Scholl. 2007. “A Classification of Assembly Line Balancing Problems.” European Journal of Operational Research 183 (2): 674–693. https://doi.org/10.1016/j.ejor.2006.10.010
  • Boysen, N., M. Fliedner, and A. Scholl. 2008. “Assembly Line Balancing: Which Model to Use When?” International Journal of Production Economics 111 (2): 509–528. https://doi.org/10.1016/j.ijpe.2007.02.026
  • Boysen, N., P. Schulze, and A. Scholl. 2022. “Assembly Line Balancing: What Happened in the Last Fifteen Years?” European Journal of Operational Research 301 (3): 797–814. https://doi.org/10.1016/j.ejor.2021.11.043
  • Chutima, P. 2022. “A Comprehensive Review of Robotic Assembly Line Balancing Problem.” Journal of Intelligent Manufacturing 33 (1): 1–34. https://doi.org/10.1007/s10845-020-01641-7
  • Daneshmand, M., F. Noroozi, C. Corneanu, F. Mafakheri, and P. Fiorini. 2023. “Industry 4.0 and Prospects of Circular Economy: A Survey of Robotic Assembly and Disassembly.” The International Journal of Advanced Manufacturing Technology 124 (9): 2973–3000. https://doi.org/10.1007/s00170-021-08389-1
  • Delorme, X., A. Dolgui, and M. Y. Kovalyov. 2012. “Combinatorial Design of a Minimum Cost Transfer Line.” Omega 40 (1): 31–41. https://doi.org/10.1016/j.omega.2011.03.004
  • Dolgui, A., B. Finel, O. Guschinskaya, N. Guschinsky, G. Levin, and F. Vernadat. 2006b. “Balancing Large-Scale Machining Lines with Multi-Spindle Heads Using Decomposition.” International Journal of Production Research 44 (18–19): 4105–4120. https://doi.org/10.1080/00207540600632232
  • Dolgui, A., B. Finel, N. Guschinsky, G. Levin, and F. Vernadat. 2005. “A Heuristic Approach for Transfer Lines Balancing.” Journal of Intelligent Manufacturing 16 (2): 159–172. https://doi.org/10.1007/s10845-004-5886-6
  • Dolgui, A., B. Finel, N. Guschinsky, G. Levin, and F. Vernadat. 2006c. “MIP Approach to Balancing Transfer Lines with Blocks of Parallel Operations.” IIE Transactions 38: 869–882. https://doi.org/10.1080/07408170500531334
  • Dolgui, A., N. Guschinsky, and G. Levin. 1999. On Problem of Optimal Design of Transfer Lines with Parallel and Sequential Operations. In Proceedings of the 7th IEEE International Conference on Emerging Emerging Technologies and Factory Automation (ETFA'99), October 18-21, 1999, Barcelona, Spain. J.M. Fuertes (Ed.), IEEE, 1999, vol. 1, pp. 329–334.
  • Dolgui, A., N. Guschinsky, and G. Levin. 2006a. “A Special Case of Transfer Lines Balancing by Graph Approach.” European Journal of Operational Research 168 (3): 732–746. https://doi.org/10.1016/j.ejor.2004.07.025
  • Dolgui, A., N. Guschinsky, and G. Levin. 2008. “Exact and Heuristic Algorithms for Balancing Transfer Lines When a Set of Available Spindle Heads Is Given.” International Transactions in Operational Research 15 (3): 339–357. https://doi.org/10.1111/j.1475-3995.2008.00635.x
  • Dolgui, A., N. Guschinsky, and G. Levin. 2009. “Graph Approach for Optimal Design of Transfer Machine with Rotary Table.” International Journal of Production Research 47 (2): 321–341. https://doi.org/10.1080/00207540802425880
  • Dolgui, A., N. Guschinsky, and G. Levin. 2012. “Enhanced Mixed Integer Programming Model for a Transfer Line Design Problem.” Computers & Industrial Engineering 62 (2): 570–578. https://doi.org/10.1016/j.cie.2011.11.005
  • Dolgui, A., N. Guschinsky, G. Levin, and J.-M. Proth. 2008. “Optimisation of Multi-Position Machines and Transfer Lines.” European Journal of Operational Research 185: 1375–1389. https://doi.org/10.1016/j.ejor.2006.03.069
  • Dolgui, A., and I. Ihnatsenka. 2009a. “Balancing Modular Transfer Lines with Serial–Parallel Activation of Spindle Heads at Stations.” Discrete Applied Mathematics 157 (1): 68–89. https://doi.org/10.1016/j.dam.2008.04.020
  • Dolgui, A, and I Ihnatsenka. 2009b. “Branch and Bound Algorithm for a Transfer Line Design Problem: Stations with Sequentially Activated Multi-Spindle Heads.” European Journal of Operational Research 197 (3): 1119–1132.
  • Dolgui, A., S. Kovalev, M. Y. Kovalyov, J. Nossack, and E. Pesch. 2014. “Minimizing Setup Costs in a Transfer Line Design Problem with Sequential Operation Processing.” International Journal of Production Economics 151: 186–194. https://doi.org/10.1016/j.ijpe.2013.10.013
  • Dolgui, A., G. Levin, and B. Rozin. 2020. “Optimisation of the Aggregation and Execution Rates for Intersecting Operation Sets: An Example of Machining Process Design.” International Journal of Production Research 58 (9): 2658–2676. https://doi.org/10.1080/00207543.2019.1629668
  • Dolgui, A., and J.-M. Proth. 2010. “Design and Balancing of Paced Assembly Lines.” In: Supply Chain Engineering: Useful Methods Sand Techniques, 237–276. https://doi.org/10.1007/978-1-84996-017-5_7
  • Dolgui, A., and J.-M. Proth. 2013. “Assembly Line Balancing: Conventional Methods and Extensions.” IFAC Proceedings 46 (9): 43–48.
  • Erel, E., and S. Sarin. 1998. “A Survey of the Assembly Line Balancing Procedures.” Production Planning & Control 9 (5): 414–434. https://doi.org/10.1080/095372898233902
  • Essafi, M., X. Delorme, and A. Dolgui. 2010a. “Balancing Lines with CNC Machines: A Multi-Start Ant Based Heuristic.” CIRP Journal of Manufacturing Science and Technology 2 (3): 176–182. https://doi.org/10.1016/j.cirpj.2010.05.002
  • Essafi, M., X. Delorme, and A. Dolgui. 2012. “A Reactive GRASP and Path Relinking for Balancing Reconfigurable Transfer Lines.” International Journal of Production Research 50 (18): 5213–5238. https://doi.org/10.1080/00207543.2012.677864
  • Essafi, M., X. Delorme, A. Dolgui, and O. Guschinskaya. 2010b. “A MIP Approach for Balancing Transfer Lines with Complex Industrial Constraints.” Computers & Industrial Engineering 58: 393–400. https://doi.org/10.1016/j.cie.2009.04.009
  • Finel, B., A. Dolgui, and F. Vernadat. 2008. “A Random Search and Backtracking Procedure for Transfer Line Balancing.” International Journal of Computer Integrated Manufacturing 21 (4): 376–387. https://doi.org/10.1080/09511920701574172
  • Gadinov, R., and W. Wilhelm. 2000. “A Cutting Plane Approach for Single-Product Assembly System Design Problem.” International Journal of Production Research 38 (8): 1731–1754. https://doi.org/10.1080/002075400188564
  • Ghosh, S., and R. Gagnon. 1989. “A Comprehensive Literature Review and Analysis of the Design, Balancing and Scheduling of Assembly Lines.” International Journal of Production Research 27 (4): 637–670. https://doi.org/10.1080/00207548908942574
  • Gungor, A., and S. Gupta. 2001. “A Solution Approach to the Disassembly Line Balancing Problem in the Presence of Task Failures.” International Journal of Production Research 39 (7): 1427–1467. https://doi.org/10.1080/00207540110052157
  • Guo, J., Zhipeng Pu, Baigang Du, and Yibing Li. 2022. “Multi-Objective Optimisation of Stochastic Hybrid Production Line Balancing Including Assembly and Disassembly Tasks.” International Journal of Production Research 60 (9): 2884–2900. https://doi.org/10.1080/00207543.2021.1905902
  • Guschinskaya, O., and A. Dolgui. 2009. “Comparison of Exact and Heuristic Methods for a Transfer Line Balancing Problem.” International Journal of Production Economics 120 (2): 276–286. https://doi.org/10.1016/j.ijpe.2008.11.018
  • Guschinskaya, O., A. Dolgui, N. Guschinsky, and G. Levin. 2008. “A Heuristic Multi-Start Decomposition Approach for Optimal Design of Serial Machining Lines.” European Journal of Operational Research 189 (3): 902–913. https://doi.org/10.1016/j.ejor.2006.03.072
  • Guschinskaya, O., E. Gurevsky, A. Dolgui, and A. Eremeev. 2011. “Metaheuristic Approaches for the Design of Machining Lines.” The International Journal of Advanced Manufacturing Technology 55 (1-4): 11–22. https://doi.org/10.1007/s00170-010-3053-0
  • He, C., Z. Guan, G. Xu, L. Yue, and S. Ullah. 2020. “Scenario-Based Robust Dominance Criteria for Multi-Objective Automated Flexible Transfer Line Balancing Problem Under Uncertainty.” International Journal of Production Research 58 (2): 467–486. https://doi.org/10.1080/00207543.2019.1593549
  • He, C., Z. Guan, L. Yue, and S. Ullah. 2018. “Set-Partitioning-Based Heuristic for Balancing and Configuration of Automated Flexible Machining Line.” International Journal of Production Research 56 (9): 3152–3172. https://doi.org/10.1080/00207543.2018.1436785
  • Hitomi, K. 1996. Manufacturing Systems Engineering. Taylor & Francis.
  • Hu, J., Z. Zhang, H. Qiu, J. Zhao, and X. Xu. 2022. “Enhanced Hybrid Ant Colony Optimization for Machining Line Balancing Problem with Compound and Complex Constraints.” Applied Sciences 12 (9): 4200. https://doi.org/10.3390/app12094200
  • Liu, X., J. Jiawei Chen, and A. Li. 2021. “Optimisation of Line Configuration and Balancing for Reconfigurable Transfer Lines Considering Demand Uncertainty.” International Journal of Production Research 59 (2): 444–466. https://doi.org/10.1080/00207543.2019.1696490
  • Makssoud, F., O. Battaïa, and A. Dolgui. 2014. “An Exact Optimization Approach for a Transfer Line Reconfiguration Problem.” The International Journal of Advanced Manufacturing Technology 72 (5-8): 717–727. https://doi.org/10.1007/s00170-014-5694-x
  • McGovern, S. M., and S. M. Gupta. 2015. “Unified Assembly-and Disassembly-Line Model Formulae.” Journal of Manufacturing Technology Management 26 (2): 195–212. https://doi.org/10.1108/JMTM-11-2013-0169
  • Mete, S., Z. A. Çil, E. Özceylan, K. Ağpak, and O. Battaïa. 2018. “An Optimisation Support for the Design of Hybrid Production Lines Including Assembly and Disassembly Tasks.” International Journal of Production Research 56 (24): 7375–7389. https://doi.org/10.1080/00207543.2018.1428774
  • Osman, H., and M. F. Baki. 2014. “Balancing Transfer Lines Using Benders Decomposition and Ant Colony Optimisation Techniques.” International Journal of Production Research 52 (5): 1334–1350. https://doi.org/10.1080/00207543.2013.842017
  • Rekiek, B., A. Dolgui, A. Delchambre, and A. Bratcu. 2002. “State of Art of Optimization Methods for Assembly Line Design.” Annual Reviews in Control 26 (2): 163–174. https://doi.org/10.1016/S1367-5788(02)00027-5
  • Salveson, M. 1955. “The Assembly Line Balancing Problem.” The Journal of Industrial Engineering 6 (3): 18–25.
  • Scholl, A., and C. Becker. 2006. "State-of-the-Art Exact and Heuristic Solution Procedures for Simple Assembly Line Balancing.” European Journal of Operational Research 168 (3): 666–693. https://doi.org/10.1016/j.ejor.2004.07.022
  • Spicer, P., Y. Koren, M. Shpitalni, and D. Yip-Hoi. 2002. “Design Principles for Machining System Configurations.” CIRP Annals 51 (1): 275–280. https://doi.org/10.1016/S0007-8506(07)61516-9
  • Szadkowski, J. 1971. “An Approach to Machining Process Optimization.” International Journal of Production Research 9 (3): 371–376. https://doi.org/10.1080/00207547108929887
  • Szadkowski, J. 1997. “Critical Path Concept for Multi-Tool Cutting Processes Optimization.” In Manufacturing Modeling, Management and Control (MIM’97), IFAC Symposium, 393–398. Vienna, Austria: Elsevier.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.