157
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A dynamic condition-based maintenance policy for heterogeneous-wearing tools with considering product quality deterioration

&
Received 11 May 2023, Accepted 04 Feb 2024, Published online: 29 Feb 2024

References

  • Agogino, A., and K. Goebel. 2007. “BEST lab, UC Berkeley.” In Milling Data set. Nasa Ames Prognostics Data Repository. Moffett Field, CA: NASA Ames Research Center.
  • Abdul-Malak, D. T., J. P. Kharoufeh, and L. M. Maillart. 2019. “Maintaining Systems with Heterogeneous Spare Parts.” Naval Research Logistics (NRL) 66 (6): 485–501. https://doi.org/10.1002/nav.21864
  • Alaswad, S., and Y. Xiang. 2017. “A Review on Condition-Based Maintenance Optimization Models for Stochastically Deteriorating System.” Reliability Engineering & System Safety 157: 54–63. https://doi.org/10.1016/j.ress.2016.08.009
  • Chen, Y., and J. Jin. 2006. “Quality-oriented-maintenance for Multiple Interactive Tooling Components in Discrete Manufacturing Processes.” IEEE Transactions on Reliability 55 (1): 123–134. https://doi.org/10.1109/TR.2005.864152
  • Chen, N., Z. S. Ye, Y. Xiang, and L. Zhang. 2015. “Condition-based Maintenance Using the Inverse Gaussian Degradation Model.” European Journal of Operational Research 243 (1): 190–199. https://doi.org/10.1016/j.ejor.2014.11.029
  • de Jonge, B. 2019. “Discretizing Continuous-Time Continuous-State Deterioration Processes, with an Application to Condition-Based Maintenance Optimization.” Reliability Engineering & System Safety 188: 1–5. https://doi.org/10.1016/j.ress.2019.03.006
  • Deng, Y. H., H. P. Zhu, G. J. Zhang, and H. Yin. 2012. “Optimal Tool Replacement Decision Method Based on Cost and Process Capability.” Mechanical Engineering and Technology, AISC 125: 9-14. Springer Berlin Heidelberg.
  • Dou, J., S. Jiao, C. Xu, F. Luo, L. Tang, and X. Xu. 2020. “Unsupervised Online Prediction of Tool Wear Values Using Force Model Coefficients in Milling.” The International Journal of Advanced Manufacturing Technology 109 (3-4): 1153–1166. https://doi.org/10.1007/s00170-020-05684-1
  • Gan, J., W. Zhang, S. Wang, and X. Zhang. 2022. “Joint Decision of Condition-Based Opportunistic Maintenance and Scheduling for Multi-Component Production Systems.” International Journal of Production Research 60 (17): 5155–5175. https://doi.org/10.1080/00207543.2021.1951447
  • Gouarir, A., G. Martínez-Arellano, G. Terrazas, P. Benardos, and S. J. P. C. Ratchev. 2018. “In-process Tool Wear Prediction System Based on Machine Learning Techniques and Force Analysis.” Procedia CIRP 77: 501–504. https://doi.org/10.1016/j.procir.2018.08.253
  • Guo, L., Y. Yu, H. Gao, T. Feng, and Y. Liu. 2022. “Online Remaining Useful Life Prediction of Milling Cutters Based on Multisource Data and Feature Learning.” IEEE Transactions on Industrial Informatics 18 (8): 5199–5208. https://doi.org/10.1109/TII.2021.3118994
  • He, Z., T. Shi, J. Xuan, and T. Li. 2021. “Research on Tool Wear Prediction Based on Temperature Signals and Deep Learning.” Wear 478-479: 203902. https://doi.org/10.1016/j.wear.2021.203902
  • Huang, Y., Z. Lu, W. Dai, W. Zhang, and B. Wang. 2021. “Remaining Useful Life Prediction of Cutting Tools Using an Inverse Gaussian Process Model.” Applied Sciences 11 (11): 5011. https://doi.org/10.3390/app11115011
  • Keizer, M. C. O., S. D. P. Flapper, and R. H. Teunter. 2017. “Condition-based Maintenance Policies for Systems with Multiple Dependent Components: A Review.” European Journal of Operational Research 261 (2): 405–420. https://doi.org/10.1016/j.ejor.2017.02.044
  • Kim, G., S. M. Yang, S. Kim, D. Y. Kim, J. G. Choi, H. W. Park, and S. Lim. 2023. “A Multi-Domain Mixture Density Network for Tool Wear Prediction Under Multiple Machining Conditions.” International Journal of Production Research, 1–20. published online, https://doi.org/10.1080/00207543.2023.2289076.
  • Lei, Y., N. Li, L. Guo, N. Li, T. Yan, and J. Lin. 2018. “Machinery Health Prognostics: A Systematic Review from Data Acquisition to RUL Prediction.” Mechanical Systems and Signal Processing 104: 799–834. https://doi.org/10.1016/j.ymssp.2017.11.016
  • Lu, B., Z. Chen, and X. Zhao. 2021. “Data-driven Dynamic Predictive Maintenance for a Manufacturing System with Quality Deterioration and Online Sensors.” Reliability Engineering & System Safety 212: 107628. https://doi.org/10.1016/j.ress.2021.107628
  • Lu, B., X. Zhou, and Y. Li. 2016. “Joint Modeling of Preventive Maintenance and Quality Improvement for Deteriorating Single-Machine Manufacturing Systems.” Computers & Industrial Engineering 91: 188–196. https://doi.org/10.1016/j.cie.2015.11.019
  • Mohamed-Larbi, R., and A. K. Daoud. 2023. “Condition-based Maintenance Optimisation for Multi-Component Systems Using Mean Residual Life.” International Journal of Production Research, 1–25. published online. https://doi.org/10.1080/00207543.2023.2280882.
  • Nakagawa, T. 2006. Maintenance Theory of Reliability. London: Springer Science and Business Media.
  • Omshi, E. M., A. Grall, and S. Shemehsavar. 2020. “A Dynamic Auto-Adaptive Predictive Maintenance Policy for Degradation with Unknown Parameters.” European Journal of Operational Research 282 (1): 81–92. https://doi.org/10.1016/j.ejor.2019.08.050
  • Pan, D., J. B. Liu, F. Huang, J. Cao, and A. Alsaedi. 2017. “A Wiener Process Model with Truncated Normal Distribution for Reliability Analysis.” Applied Mathematical Modelling 50: 333–346. https://doi.org/10.1016/j.apm.2017.05.049
  • Park, M., and H. Pham. 2023. “Condition-based Maintenance for a Degradation-Shock Dependence System Under Warranty.” International Journal of Production Research 61 (15): 5212–5227. https://doi.org/10.1080/00207543.2022.2099319
  • Pearn, W. L., Y. C. Hsu, and J. J. Horng Shiau. 2007. “Tool Replacement Policy for one-Sided Processes with low Fraction Defective.” Journal of the Operational Research Society 58 (8): 1075–1083. https://doi.org/10.1057/palgrave.jors.2602224
  • Rebaiaia, M. L., and D. Ait-Kadi. 2023. “A new Integrated Strategy for Optimising the Maintenance Cost of Complex Systems Using Reliability Importance Measures.” International Journal of Production Research 1–22, published online. https://doi.org/10.1080/00207543.2023.2254406.
  • Ren, Y., Y. Ding, and S. Zhou. 2006. “A Data Mining Approach to Study the Significance of Nonlinearity in Multistation Assembly Processes.” IIE Transactions 38 (12): 1069–1083. https://doi.org/10.1080/07408170600735538
  • Rizal, M., J. A. Ghani, M. Z. Nuawi, and C. H. C. Haron. 2013. “Online Tool Wear Prediction System in the Turning Process Using an Adaptive Neuro-Fuzzy Inference System.” Applied Soft Computing 13 (4): 1960–1968. https://doi.org/10.1016/j.asoc.2012.11.043
  • Shaban, Y., M. Aramesh, S. Yacout, M. Balazinski, H. Attia, and H. Kishawy. 2017. “Optimal Replacement Times for Machining Tool During Turning Titanium Metal Matrix Composites Under Variable Machining Conditions.” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 231 (6): 924–932. https://doi.org/10.1177/0954405415577591
  • Shi, J., and S. Zhou. 2009. “Quality Control and Improvement for Multistage Systems: A Survey.” IIE Transactions 41 (9): 744–753. https://doi.org/10.1080/07408170902966344
  • Sun, H., J. Zhang, R. Mo, and X. Zhang. 2020. “In-process Tool Condition Forecasting Based on a Deep Learning Method.” Robotics and Computer-Integrated Manufacturing 64: 101924. https://doi.org/10.1016/j.rcim.2019.101924
  • Taguchi, G. 1986. Introduction to Quality Engineering: Designing Quality Into Products and Processes. Tokyo: The Organization Tokyo.
  • Traini, E., G. Bruno, and F. Lombardi. 2021. “Tool Condition Monitoring Framework for Predictive Maintenance: A Case Study on Milling Process.” International Journal of Production Research 59 (23): 7179–7193. https://doi.org/10.1080/00207543.2020.1836419
  • Vagnorius, Z., M. Rausand, and K. Sørby. 2010. “Determining Optimal Replacement Time for Metal Cutting Tools.” European Journal of Operational Research 206 (2): 407–416. https://doi.org/10.1016/j.ejor.2010.03.023
  • Van Oosterom, C., H. Peng, and G. J. van Houtum. 2017. “Maintenance Optimization for a Markovian Deteriorating System with Population Heterogeneity.” IISE Transactions 49 (1): 96–109. https://doi.org/10.1080/0740817X.2016.1205239
  • Xia, T., G. Shi, G. Si, S. Du, and L. Xi. 2021. “Energy-oriented Joint Optimization of Machine Maintenance and Tool Replacement in Sustainable Manufacturing.” Journal of Manufacturing Systems 59: 261–271. https://doi.org/10.1016/j.jmsy.2021.01.015
  • Xu, W., and L. Cao. 2015. “Optimal Tool Replacement with Product Quality Deterioration and Random Tool Failure.” International Journal of Production Research 53 (6): 1736–1745. https://doi.org/10.1080/00207543.2014.957878
  • Xu, X., J. Wang, W. Ming, M. Chen, and Q. An. 2021. “In-process tap Tool Wear Monitoring and Prediction Using a Novel Model Based on Deep Learning.” The International Journal of Advanced Manufacturing Technology 112 (1-2): 453–466. https://doi.org/10.1007/s00170-020-06354-y
  • Yuan, J., L. Liu, Z. Yang, J. Bo, and Y. Zhang. 2021. “Tool Wear Condition Monitoring by Combining Spindle Motor Current Signal Analysis and Machined Surface Image Processing.” The International Journal of Advanced Manufacturing Technology 116 (7-8): 2697–2709. https://doi.org/10.1007/s00170-021-07366-y
  • Zaretalab, A., H. S. Haghighi, S. Mansour, and M. S. Sajadieh. 2018. “A Mathematical Model for the Joint Optimization of Machining Conditions and Tool Replacement Policy with Stochastic Tool Life in the Milling Process.” The International Journal of Advanced Manufacturing Technology 96 (5-8): 2319–2339. https://doi.org/10.1007/s00170-018-1683-9
  • Zaretalab, A., H. S. Haghighi, S. Mansour, and M. S. Sajadieh. 2019. “Optimisation of Tool Replacement Time in the Machining Process Based on Tool Condition Monitoring Using the Stochastic Approach.” International Journal of Computer Integrated Manufacturing 32 (2): 159–173. https://doi.org/10.1080/0951192X.2018.1550677
  • Zhang, L., Y. Lei, and H. Shen. 2016. “How Heterogeneity Influences Condition-Based Maintenance for Gamma Degradation Process.” International Journal of Production Research 54 (19): 5829–5841. https://doi.org/10.1080/00207543.2016.1181282

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.