237
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Stability analysis of distributed-order nonlinear dynamic systems

&
Pages 523-536 | Received 29 Apr 2017, Accepted 25 Nov 2017, Published online: 14 Dec 2017

References

  • Abate, J., & Whitt, W. (2006). A unified framework for numerically inverting Laplace transforms. INFORMS Journal on Computing, 18(4), 408–421.
  • Agarwal, R., Hristova, S., & O'Regan, D. (2015). Lyapunov functions and strict stability of Caputo fractional differential equations. Advances in Difference Equations, 2015(1), 346.
  • Aguila-Camacho, N., Duarte-Mermoud, M. A., & Gallegos, J. A. (2014). Lyapunov functions for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 19(9), 2951–2957.
  • Atanackovic, T. M. (2003). On a distributed derivative model of a viscoelastic body. Comptes Rendus Mecanique, 331(10), 687–692.
  • Atanacković, T. M., Dolićanin, D., Konjik, S., & Pilipović, S. (2011). Dissipativity and stability for a nonlinear differential equation with distributed order symmetrized fractional derivative. Applied Mathematics Letters, 24(6), 1020–1025.
  • Atanacković, T. M., Oparnica, L., & Pilipović, S. (2007). On a nonlinear distributed order fractional differential equation. Journal of Mathematical Analysis and Applications, 328(1), 590–608.
  • Caputo, M. (1969, Elasticitá e dissipazione [Elasticity and elastic dissipation]. Rigorous time domain responses of polarizable media, 40(2), 423–434, Bologna: Zanichelli Publisher.
  • Caputo, M. (1997). Elasticitá e dissipazione [Elasticity and elastic dissipation]. Rigorous time domain responses of polarizable media, 40(2), 423–434.
  • Chen, J., Li, C., Huang, T., & Yang, X. (2017). Global stabilization of memristor-based fractional-order neural networks with delay via output-feedback control. Modern Physics Letters B, 31(05), 1750031.
  • Chen, L., Chai, Y., Wu, R., & Yang, J. (2012). Stability and stabilization of a class of nonlinear fractional-order systems with Caputo derivative. IEEE Transactions on Circuits and Systems II: Express Briefs, 59(9), 602–606.
  • Chen, L., He, Y., Chai, Y., & Wu, R. (2014). New results on stability and stabilization of a class of nonlinear fractional-order systems. Nonlinear Dynamics, 75(4), 633–641.
  • Cho, Y., Kim, I., & Sheen, D. (2015). A fractional-order model for MINMOD Millennium. Mathematical Biosciences, 262, 36–45.
  • Du, B., Lam, J., Shu, Z., & Chen, Y. (2016). On reachable sets for positive linear systems under constrained exogenous inputs. Automatica, 74, 230–237.
  • Duarte-Mermoud, M. A., Aguila-Camacho, N., Gallegos, J. A., & Castro-Linares, R. (2015). Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 22(1), 650–659.
  • Duong, P. L. T., Kwok, E., & Lee, M. (2015). Optimal design of stochastic distributed order linear SISO systems using hybrid spectral method. Mathematical Problems in Engineering, 2015, 989542.
  • Duong, P. L. T., Kwok, E., & Lee, M. (2016). Deterministic analysis of distributed order systems using operational matrix. Applied Mathematical Modelling, 40(3), 1929–1940.
  • Fernández-Anaya, G., Nava-Antonio, G., Jamous-Galante, J., Muñoz-Vega, R., & Hernández-Martínez, E. G. (2017). Asymptotic stability of distributed order nonlinear dynamical systems. Communications in Nonlinear Science and Numerical Simulation, 48, 541–549.
  • Freeborn, T. J., Maundy, B., & Elwakil, A. S. (2015). Fractional-order models of supercapacitors, batteries and fuel cells: A survey. Materials for Renewable and Sustainable Energy, 4(3), 1–7.
  • Gao, G. H., Sun, H. W., & Sun, Z. Z. (2015). Some high-order difference schemes for the distributed-order differential equations. Journal of Computational Physics, 298, 337–359.
  • Hasan, M. M., & Drapaca, C. (2015). A fractional order model for local electric fields in tissues. Mechanics of Biological Systems and Materials, 7, 75–79.
  • Hu, J. B., Lu, G. P., Zhang, S. B., & Zhao, L. D. (2015). Lyapunov stability theorem about fractional system without and with delay. Communications in Nonlinear Science and Numerical Simulation, 20(3), 905–913.
  • Ibrir, S., & Bettayeb, M. (2015). New sufficient conditions for observer-based control of fractional-order uncertain systems. Automatica, 59, 216–223.
  • Jakovljević, B. B., Rapaić, M. R., Jelicić, Z. D., & Sekara, T. B. (2014, June). Optimization of distributed order fractional PID controller under constraints on robustness and sensitivity to measurement noise. In 2014 International Conference on Fractional Differentiation and Its Applications (ICFDA) (pp. 1–6). Catania, Italy: IEEE.
  • Jiao, Z., Chen, Y. Q., & Podlubny, I. (2012). Distributed-order dynamic systems: Stability, simulation, applications and perspectives. Springer briefs in electrical and computer engineering/Springer briefs in control, automation and robotics. Springer.
  • Kamal, S., Raman, A., & Bandyopadhyay, B. (2013). Finite-time stabilization of fractional order uncertain chain of integrator: An integral sliding mode approach. IEEE Transactions on Automatic Control, 58(6), 1597–1602.
  • Khalil, H. K., & Grizzle, J. W. (1996). Nonlinear systems (Vol. 3). London, UK: Prentice Hall.
  • Kochubei, A. N. (2009). Distributed order derivatives and relaxation patterns . Journal of Physics A: Mathematical and Theoretical, 42, 315203. arXiv preprint arXiv:0905.0616.
  • Krstic, M., & Smyshlyaev, A. Lecture notes of control of PDE systems. Retrieved from http://www.lehigh.edu/∼eus204/Teaching/ME450_CDPS/ lectures/lecture03.pdf
  • Lazović, G., Vosika, Z., Lazarević, M., Simić-Krstić, J., & Koruga, Đ. (2014). Modeling of bioimpedance for human skin based on fractional distributed-order modified Cole model. FME Transactions, 42(1), 74–81.
  • Li, D., Cao, J., Zhou, S., & Chen, Y. (2015, August). Fractional order model of broadband piezoelectric energy harvesters. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V009T07A019–V009T07A019, Boston, Massachusetts, USA: American Society of Mechanical Engineers.
  • Li, X. Y., & Wu, B. Y. (2016). A numerical method for solving distributed order diffusion equations. Applied Mathematics Letters, 53, 92–99.
  • Li, Y., Chen, Y., & Podlubny, I. (2009). Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica, 45(8), 1965–1969.
  • Li, Y., Chen, Y., & Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Computers & Mathematics with Applications, 59(5), 1810–1821.
  • McClure, T. (2012). Numerical inverse Laplace transform. Retrieved fromhttps://www.mathworks.com/ matlabcentral/fileexchange/39035-numerical-inverse-laplace-transform?requestedDomain= www.mathworks.com
  • Meerschaert, M. M., & Tadjeran, C. (2004). Finite difference approximations for fractional advection–dispersion flow equations. Journal of Computational and Applied Mathematics, 172(1), 65–77.
  • Noroozi, H., & Ansari, A. (2013). Extremal positive solutions for the distributed order fractional hybrid differential equations. Computational Methods for Differential Equations, 1(2), 120–134.
  • Noroozi, H., & Ansari, A. (2014). Basic results on distributed order fractional hybrid differential equations with linear perturbations. Journal of Mathematical Modeling, 2(1), 55–73.
  • Odabasi, M., & Misirli, E. (2015). On the solutions of the nonlinear fractional differential equations via the modified trial equation method. Mathematical Methods in the Applied Sciences. doi: 10.1002/mma.3533
  • Petras, I. (2011). Fractional-order nonlinear systems: Modeling, analysis and simulation. Berlin, Germany: Springer Science & Business Media.
  • Pillonetto, G., Chen, T., Chiuso, A., De Nicolao, G., & Ljung, L. (2016). Regularized linear system identification using atomic, nuclear and kernel-based norms: The role of the stability constraint. Automatica, 69, 137–149.
  • Podlubny, I. (1998). Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Vol. 198). San Diego, USA: Academic Press.
  • Sandev, T., Chechkin, A. V., Korabel, N., Kantz, H., Sokolov, I. M., & Metzler, R. (2015). Distributed-order diffusion equations and multifractality: Models and solutions. Physical Review E, 92(4), 042117.
  • Shen, J., & Lam, J. (2014). Non-existence of finite-time stable equilibria in fractional-order nonlinear systems. Automatica, 50(2), 547–551.
  • Shen, J., & Lam, J. (2016). Stability and performance analysis for positive fractional-order systems with time-varying delays. IEEE Transactions on Automatic Control, 61(9), 2676–2681.
  • Stanisławski, R., & Latawiec, K. J. (2013). Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for the asymptotic stability. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(2), 353–361.
  • Su, N., Nelson, P. N., & Connor, S. (2015). The distributed-order fractional diffusion-wave equation of groundwater flow: Theory and application to pumping and slug tests. Journal of Hydrology, 529, 1262–1273.
  • Süli, E., & Mayers, D. F. (2003). An introduction to numerical analysis. Cambridge UK: Cambridge University Press.
  • Tavazoei, M. S. (2012). From traditional to fractional PI control: A key for generalization. IEEE Industrial Electronics Magazine, 6, 41–51.
  • Tavazoei, M. S. (2013). On type number concept in fractional-order systems. Automatica, 49(1), 301–304.
  • Tavazoei, M. S. (2014). Toward searching possible oscillatory region in order space for nonlinear fractional-order systems. ASME Journal of Computational and Nonlinear Dynamics, 9, 021011.
  • Vargas-De-León, C. (2015). Volterra-type Lyapunov functions for fractional-order epidemic systems. Communications in Nonlinear Science and Numerical Simulation, 24(1), 75–85.
  • Yang, H., & Jiang, B. (2016). Stability of fractional-order switched non-linear systems. IET Control Theory & Applications, 10(8), 965–970.
  • Yang, X., Li, C., Huang, T., Song, Q., & Chen, X. (2017). Quasi-uniform synchronization of fractional-order memristor-based neural networks with delay. Neurocomputing, 234, 205–215.
  • Yang, X., Li, C., Song, Q., Huang, T., & Chen, X. (2016). Mittag–Leffler stability analysis on variable-time impulsive fractional-order neural networks. Neurocomputing, 207, 276–286.
  • Yang, Y., & Chen, G. (2015). Finite‐time stability of fractional order impulsive switched systems. International Journal of Robust and Nonlinear Control, 25(13), 2207–2222.
  • Yu, J., Hu, H., Zhou, S., & Lin, X. (2013). Generalized Mittag–Leffler stability of multi-variables fractional order nonlinear systems. Automatica, 49(6), 1798–1803.
  • Zhang, R., Tian, G., Yang, S., & Cao, H. (2015). Stability analysis of a class of fractional order nonlinear systems with order lying in (0, 2). ISA Transactions, 56, 102–110.
  • Zhang, X. M., & Han, Q. L. (2015). Abel lemma-based finite-sum inequality and its application to stability analysis for linear discrete time-delay systems. Automatica, 57, 199–202.
  • Zhao, L. D., Hu, J. B., Fang, J. A., & Zhang, W. B. (2012). Studying on the stability of fractional-order nonlinear system. Nonlinear Dynamics, 70(1), 475–479.
  • Zhao, X., Liu, H., Zhang, J., & Li, H. (2015). Multiple-mode observer design for a class of switched linear systems. IEEE Transactions on Automation Science and Engineering, 12(1), 272–280.
  • Zheng, G., Bejarano, F. J., Perruquetti, W., & Richard, J. P. (2015). Unknown input observer for linear time-delay systems. Automatica, 61, 35–43.
  • Zhou, F., Zhao, Y., Li, Y., & Chen, Y. (2013). Design, implementation and application of distributed order PI control. ISA Transactions, 52(3), 429–437.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.