232
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Impulse response function identification of linear mechanical systems based on Kautz basis expansion with multiple poles

, , , &
Pages 1559-1571 | Received 01 Jun 2017, Accepted 03 Apr 2018, Published online: 14 May 2018

References

  • Bach, F. R. , Lanckriet, G. R. , & Jordan, M. I. (2004, July). Multiple kernel learning, conic duality, and the SMO algorithm, In Banff, Alta (Ed.) Proceedings of the twenty-first international conference on Machine learning . (p. 41–48), Canada: ICML 2004.
  • Bilmes, J. A. (1998). A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. International Computer Science Institute , 4 (510), 126.
  • Brown, D. L. , Allemang, R. J. , Zimmerman, R. , & Mergeay, M. (1979). Parameter estimation techniques for modal analysis ( SAE Technical Paper Series No. 79022).
  • Caicedo, J. M. , Dyke, S. J. , & Johnson, E. A. (2004). Natural excitation technique and eigensystem realization algorithm for phase I of the IASC-ASCE benchmark problem: Simulated data. Journal of Engineering Mechanics , 130 (1), 49–60.
  • Campello, R. J. , Do Amaral, W. C. , & Favier, G. (2006). A note on the optimal expansion of Volterra models using Laguerre functions. Automatica , 42 (4), 689–693.
  • Campello, R. J. , Favier, G. , & Do Amaral, W. C. (2004). Optimal expansions of discrete-time Volterra models using Laguerre functions. Automatica , 40 (5), 815–822.
  • Chong, E. K. , & Zak, S. H. (2013). An introduction to optimization . New Jersey: Wiley.
  • da Rosa, A. , Campello, R. J. , & Amaral, W. C. (2007). Choice of free parameters in expansions of discrete-time Volterra models using Kautz functions. Automatica , 43 (6), 1084–1091.
  • da Rosa, A. , Campello, R. J. , & Amaral, W. C. (2009). Exact search directions for optimization of linear and nonlinear models based on generalized orthonormal functions. IEEE Transactions on Automatic Control , 54 (12), 2757–2772.
  • Da Silva, S. (2011). Non-parametric identification of mechanical systems by Kautz filter with multiple poles. Mechanical Systems and Signal Processing , 25 (4), 1103–1111.
  • Da Silva, S. , Dias Júnior, M. , & Lopes Junior, V. (2009). Identification of mechanical systems through Kautz filter. Journal of Vibration and Control , 15 (6), 849–865.
  • Demirli, R. , & Saniie, J. (2001a). Model-based estimation of ultrasonic echoes. Part I: Analysis and algorithms. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control , 48 (3), 787–802.
  • Demirli, R. , & Saniie, J. (2001b). Model-based estimation of ultrasonic echoes. Part II: Nondestructive evaluation applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control , 48 (3), 803–811.
  • Feder, M. , & Weinstein, E. (1988). Parameter estimation of superimposed signals using the EM algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing , 36 (4), 477–489.
  • Gönen, M. , & Alpaydın, E. (2011). Multiple kernel learning algorithms. Journal of Machine Learning Research , 12 (Jul), 2211–2268.
  • Guillaume, P. , Verboven, P. , Vanlanduit, S. , Van Der Auweraer, H. , & Peeters, B. (2003, February). A poly-reference implementation of the least-squares complex frequency-domain estimator. In Proceedings of IMAC (Vol. 21, pp. 183–192, Kissimmee, FL, A Conference & Exposition on Structural Dynamics, Society for Experimental Mechanics).
  • Heuberger, P. S. C. , Van den Hof, P. M. J. , & Bosgra, O. H. (1995). A generalized orthonormal basis for linear dynamical systems. IEEE Transactions on Automatic Control , 40 (3), 451–465.
  • Heuberger, P. S. C. , van den Hof, P. M. J. , & Wahlberg, B. (2005). Modelling and identification with rational orthogonal basis functions . Berlin: Springer.
  • Hoi, S. C. , Jin, R. , Zhao, P. , & Yang, T. (2013). Online multiple kernel classification. Machine Learning , 90 (2), 289–316.
  • Ibrahim, S. R. , & Mikulcik, E. C. (1973). A time domain modal vibration test technique. Shock & Vibration Bulletin , 43 (4), 21–37.
  • Jin, R. , Hoi, S. C. , & Yang, T. (2010, October). Online multiple kernel learning: Algorithms and mistake bounds. In International conference on algorithmic learning theory (pp. 390–404). Berlin: Springer.
  • Juang, J. N. , & Pappa, R. S. (1985). An eigensystem realization algorithm for modal parameter identification and model reduction. Journal of Guidance, Control, and Dynamics , 8 (5), 620–627.
  • Kibangou, A. Y. , Favier, G. , & Hassani, M. M. (2005). Laguerre–Volterra filters optimization based on Laguerre spectra. EURASIP Journal on Advances in Signal Processing , 2005 (17), 391385.
  • Ljung, L. (1999). System identification . Boston: Wiley.
  • Mathews, J. , & Walker, R. L. (1970). Mathematical methods of physics (Vol. 501). New York, NY: WA Benjamin.
  • Mohanty, P. , & Rixen, D. J. (2004). A modified Ibrahim time domain algorithm for operational modal analysis including harmonic excitation. Journal of Sound and Vibration , 275 (1), 375–390.
  • Moré, J. J. (1978). The Levenberg–Marquardt algorithm: Implementation and theory, G.A. Watson . In Numerical analysis (pp. 105–116). Berlin: Springer.
  • Morvan, R. , Tanguy, N. , Vilbé, P. , & Calvez, L. C. (2000). Pertinent parameters for Kautz approximation. Electronics Letters , 36 (8), 769–771.
  • Ninness, B. , & Gustafsson, F. (1997). A unifying construction of orthonormal bases for system identification. IEEE Transactions on Automatic Control , 42 (4), 515–521.
  • Oliveira, G. H. , da Rosa, A. , Campello, R. J. , Machado, J. B. , & Amaral, W. C. (2011). An introduction to models based on Laguerre, Kautz and other related orthonormal functions – Part I: Linear and uncertain models. International Journal of Modelling, Identification and Control , 14 (1–2), 121–132.
  • Oliveira, G. H. , da Rosa, A. , Campello, R. J. , Machado, J. B. , & Amaral, W. C. (2012). An introduction to models based on Laguerre, Kautz and other related orthonormal functions – Part II: Non-linear models. International Journal of Modelling, Identification and Control , 16 (1), 1–14.
  • Rugh, W. J. (1981). Nonlinear system theory . Baltimore: Johns Hopkins University Press.
  • Schetzen, M. (1980). The Volterra and Wiener theories of nonlinear systems . Malabar: Krieger.
  • Sonnenburg, S. , Rätsch, G. , Schäfer, C. , & Schölkopf, B. (2006). Large scale multiple kernel learning. Journal of Machine Learning Research , 7 (Jul), 1531–1565.
  • Vold, H. , Kundrat, J. , Rocklin, G. T. , & Russell, R. (1982). A multi-input modal estimation algorithm for mini-computers ( SAE Technical Paper Series, No. 820194).
  • Wahlberg, B. (1994). System identification using Kautz models. IEEE Transactions on Automatic Control , 39 (6), 1276–1282.
  • Wahlberg, B. , & Mäkilä, P. M. (1996). On approximation of stable linear dynamical systems using Laguerre and Kautz functions. Automatica , 32 (5), 693–708.
  • Westwick, D. T. , & Kearney, R. E. (2001). Separable least squares identification of nonlinear Hammerstein models: Application to stretch reflex dynamics. Annals of Biomedical Engineering , 29 (8), 707–718.
  • Wu, C. J. (1983). On the convergence properties of the EM algorithm. The Annals of Statistics , 11, 95–103.
  • Xu, Z. , Jin, R. , Yang, H. , King, I. , & Lyu, M. R. (2010, June). Simple and efficient multiple kernel learning by group lasso. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 1175–1182). Haifa, Israel.
  • Zhou, W. , & Chelidze, D. (2008). Generalized eigenvalue decomposition in time domain modal parameter identification. Journal of Vibration and Acoustics , 130 (1), 011001.
  • Zhou, Z. H. (2012). Ensemble methods: Foundations and algorithms . Chapman & Hall/CRC Data Mining and Knowledge Discovery Serie, Taylor & Francis, 2012: CRC press.
  • Zhou, Z. H. (2016). Machine learning . Beijing: Tsinghua University Press.
  • Zhou, Z. H. , Jiang, Y. , & Chen, S. F. (2003). Extracting symbolic rules from trained neural network ensembles. Ai Communications , 16 (1), 3–15.
  • Zhou, Z. H. , Wu, J. , & Tang, W. (2002). Ensembling neural networks: Many could be better than all. Artificial Intelligence , 137 (1–2), 239–263.
  • Zhou, Z. H. , & Yu, Y. (2005). Ensembling local learners through multimodal perturbation. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , 35 (4), 725–735.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.