166
Views
11
CrossRef citations to date
0
Altmetric
Articles

Finite-time boundedness of Markovain jump nonlinear systems with incomplete information

ORCID Icon, , & ORCID Icon
Pages 3296-3306 | Received 31 Jan 2018, Accepted 06 Oct 2018, Published online: 20 Oct 2018

References

  • Ali, M. S., Saravanan, S., & Cao, J. (2017). Finite-time boundedness, L2-gain analysis and control of Markovian jump switched neural networks with additive time-varying delays. Nonlinear Analysis: Hybrid Systems, 23, 27–43.
  • Amato, F., Ambrosino, R., Cosentino, C., & De Tommasi, G. (2010). Input-output finite time stabilization of linear systems. Automatica, 46(9), 1558–1562. doi: 10.1016/j.automatica.2010.06.005
  • Amato, F., Ariola, M., & Cosentino, C. (2010). Finite-time control of discrete-time linear systems: Analysis and design conditions. Automatica, 46(5), 919–924. doi: 10.1016/j.automatica.2010.02.008
  • Amato, F., Ariola, M., & Dorato, P. (2001). Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica, 37(9), 1459–1463. doi: 10.1016/S0005-1098(01)00087-5
  • Balasubramaniam, P., Revathi, V. M., & Park, J. H. (2013). L2-L∞ filtering for neutral Markovian switching system with mode-dependent time-varying delays and partially unknown transition probabilities. Applied Mathematics and Computation, 219(17), 9524–9542. doi: 10.1016/j.amc.2013.03.037
  • Cheng, J., Zhu, H., Zhong, S., Zeng, Y., & Dong, X. (2013). Finite-time H∞ control for a class of Markovian jump systems with mode-dependent time-varying delays via new Lyapunov functionals. ISA transactions, 52, 768–774. doi: 10.1016/j.isatra.2013.07.015
  • Cheng, J., Zhu, H., Zhong, S., Zhong, Q., & Zeng, Y. (2015). Finite-time H∞ estimation for discrete-time Markov jump systems with time-varying transition probabilities subject to average dwell time switching. Communications in Nonlinear Science and Numerical Simulation, 20(2), 571–582. doi: 10.1016/j.cnsns.2014.06.006
  • Chua, L., Wu, C., Hung, A., & Zhong, G. (1993). A universal circuit for studying and generating chaos-part I: Routes to chaos. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 40(10), 732–744. doi: 10.1109/81.246149
  • Cui, J., Liu, T., & Wang, Y. (2017). New stability criteria for a class of Markovian jumping genetic regulatory networks with time-varying delays. International Journal of Innovative Computing, Information and Control, 13(3), 809–822.
  • Huang, H., Long, F., & Li, C. (2015). Stabilization for a class of Markovian jump linear systems with linear fractional uncertainties. International Journal of Innovative Computing, Information and Control, 11(1), 295–307.
  • Khalil, H. K. (2002). Nonlinear systems. New Jersey, Upper Saddle River, NJ: Prentice Hall.
  • Kushner, H. (1966). Finite-time stochastic stability and the analysis of tracking systems. IEEE Transactions on Automatic Control, 11(2), 219–227. doi: 10.1109/TAC.1966.1098315
  • Kushner, H. J. (1967). Stochastic stability and control. New York: Academic Press.
  • Li, H., Gao, H., Shi, P., & Zhao, X. (2014). Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica, 50(7), 1825–1834. doi: 10.1016/j.automatica.2014.04.006
  • Li, Y., Sun, H., Zong, G., & Hou, L. (2017). Composite anti-disturbance resilient control for Markovian jump nonlinear systems with partly unknown transition probabilities and multiple disturbances. International Journal of Robust and Nonlinear Control, 27(14), 2323–2337. doi: 10.1002/rnc.3682
  • Li, L., & Zhang, Q. (2016). Finite-time H∞ control for singular Markovian jump systems with partly unknown transition rates. Applied Mathematical Modelling, 40(1), 302–314. doi: 10.1016/j.apm.2015.04.044
  • Liu, H., Shen, Y., & Zhao, X. (2013). Finite-time stabilization and boundedness of switched linear system under state-dependent switching. Journal of the Franklin Institute, 350(3), 541–555. doi: 10.1016/j.jfranklin.2012.12.014
  • Ma, Y., Jia, X., & Liu, D. (2016). Robust finite-time H∞ control for discrete-time singular Markovian jump systems with time-varying delay and actuator saturation. Applied Mathematics and Computation, 286, 213–227. doi: 10.1016/j.amc.2016.03.028
  • Ren, H., & Zong, G. (2017a). Robust input-output finite-time filtering for uncertain Markovian jump nonlinear systems with partially known transition probabilities. International Journal of Adaptive Control and Signal Processing, 31(10), 1437–1455. doi: 10.1002/acs.2777
  • Ren, H., & Zong, G. (2017b). Asynchronous input-output finite-time filtering for switched LPV systems. Journal of the Franklin Institute, 354(14), 6292–6311. doi: 10.1016/j.jfranklin.2017.07.039
  • Saravanakumar, R., Ali, M. S., & Karimi, H. R. (2017). Robust H∞ control of uncertain stochastic Markovian jump systems with mixed time-varying delays. International Journal of Systems Science, 48(4), 862–872. doi: 10.1080/00207721.2016.1218092
  • Sathishkumar, M., Sakthivel, R., Kwon, O. M., & Kaviarasan, B. (2017). Finite-time mixed H∞ and passive filtering for Takagi-Sugeno fuzzy nonhomogeneous Markovian jump systems. International Journal of Systems Science, 48(7), 1416–1427. doi: 10.1080/00207721.2016.1261199
  • Shen, H., Park, J. H., Wu, Z. G., & Zhang, Z. (2015). Finite-time H∞ synchronization for complex networks with semi-Markov jump topology. Communications in Nonlinear Science and Numerical Simulation, 24, 40–51. doi: 10.1016/j.cnsns.2014.12.004
  • Shi, P., Boukas, E. K., & Agarwal, R. K. (1999). Control of Markovian jump discrete-time systems with norm bounded uncertainty and unknown delay. IEEE Transactions on Automatic Control, 44(11), 2139–2144. doi: 10.1109/9.802932
  • Shi, P., Liu, M., & Zhang, L. (2015). Fault-tolerant sliding mode observer synthesis of Markovian jump systems using quantized measurements. IEEE Transactions on Industrial Electronics, 62(9), 5910–5918. doi: 10.1109/TIE.2015.2442221
  • Shi, P., Su, X., & Li, F. (2016). Dissipativity-based filtering for fuzzy switched systems with stochastic perturbation. IEEE Transactions on Automatic Control, 61(6), 1694–1699. doi: 10.1109/TAC.2015.2477976
  • Shi, P., Zhang, Y., & Agarwal, R. (2015). Stochastic finite-time state estimation for discrete time-delay neural networks with Markovian jumps. Neurocomputing, 151, 168–174. doi: 10.1016/j.neucom.2014.09.059
  • Shi, P., Zhang, Y., Chadli, M., & Agarwal, R. K. (2016). Mixed H-infinity and passive filtering for discrete fuzzy neural networks with stochastic jumps and time delays. IEEE transactions on neural networks and learning systems, 27(4), 903–909. doi: 10.1109/TNNLS.2015.2425962
  • Shu, Z., Lam, J., & Xiong, J. (2010). Static output-feedback stabilization of discrete-time Markovian jump linear systems: A system augmentation approach. Automatica, 46(5), 687–694. doi: 10.1016/j.automatica.2010.02.001
  • Souza, C. E. (2006). Robust stability and stabilization of uncertain discrete-time Markovian jump linear systems. IEEE Transactions on Automatic Control, 51(5), 836–841. doi: 10.1109/TAC.2006.875012
  • Su, X., Liu, X., Shi, P., & Yang, R. (2017). Sliding mode control of discrete-time switched systems with repeated scalar nonlinearity. IEEE Transactions on Automatic Control, 62(9), 4604–4610. doi: 10.1109/TAC.2016.2626398
  • Sun, H., Li, Y., Zong, G., & Hou, L. (2018). Disturbance attenuation and rejection for stochastic Markovian jump system with partially known transition probabilities. Automatica, 89, 349–357. doi: 10.1016/j.automatica.2017.12.046
  • Vembarasan, V., Balasubramaniam, P., & Chan, C. S. (2014). Non-fragile state observer design for neural networks with Markovian jumping parameters and time-delays. Nonlinear Analysis: Hybrid Systems, 14, 61–73.
  • Wei, Y., Zheng, W. X., Li, Z., & Zong, G. (2015). Anti-windup design of uncertain discrete-time Markovian jump systems with partially known transition probabilities and saturating actuator. International Journal of Systems Science, 46(7), 1288–1298. doi: 10.1080/00207721.2013.819949
  • Wu, Z., Shi, P., Su, H., & Chu, J. (2014). Asynchronous l2-l∞ filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities. Automatica, 50(1), 180–186. doi: 10.1016/j.automatica.2013.09.041
  • Wu, L., Yao, X., & Zheng, W. (2012). Generalized H2 fault detection for Markovian jumping two-dimensional systems. Automatica, 48(8), 1741–1750. doi: 10.1016/j.automatica.2012.05.024
  • Xiong, L., Tian, J., & Liu, X. (2012). Stability analysis for neutral Markovian jump systems with partially unknown transition probabilities. Journal of the Franklin Institute, 349(6), 2193–2214. doi: 10.1016/j.jfranklin.2012.04.003
  • Zhang, Y., He, Y., Wu, M., & Zhang, J. (2011). Stabilization for Markovian jump systems with partial information on transition probability based on free-connection weighting matrices. Automatica, 47(1), 79–84. doi: 10.1016/j.automatica.2010.09.009
  • Zhang, Y., Shi, P., & Agarwal, R. K. (2018). Event-based dissipative analysis for discrete time-delay singular stochastic systems. International Journal of Robust and Nonlinear Control. Retrieved from http://dx.doi.org/10.1002/rnc.4363.
  • Zhang, Y., Shi, Y., & Shi, P. (2016). Robust and non-fragile finite-time H∞ control for uncertain Markovian jump nonlinear systems. Applied Mathematics and Computation, 279, 125–138. doi: 10.1016/j.amc.2016.01.012
  • Zong, G., Yang, D., Hou, L., & Wang, Q. (2013). Robust finite-time H∞ control for Markovian jump systems with partially known transition probabilities. Journal of the Franklin Institute, 350(6), 1562–1578. doi: 10.1016/j.jfranklin.2013.04.003
  • Zuo, Z., Liu, Y., Wang, Y., & Li, H. (2012). Finite-time stochastic stability and stabilisation of linear discrete-time Markovian jump systems with partly unknown transition probabilities. IET Control Theory and Applications, 6(10), 1522–1526. doi: 10.1049/iet-cta.2011.0335

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.