211
Views
7
CrossRef citations to date
0
Altmetric
Articles

Robust auto tool change for industrial robots using visual servoing

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 432-449 | Received 29 Dec 2017, Accepted 17 Dec 2018, Published online: 07 Jan 2019

References

  • Baumann, M., Léonard, S., Croft, E. A., & Little, J. J. (2010). Path planning for improved visibility using a probabilistic road map. IEEE Transactions on Robotics, 26(1), 195–200. doi: 10.1109/TRO.2009.2035745
  • Bi, Z. M., & Zhang, W. J. (2001). Flexible fixture design and automation: Review, issues and future directions. International Journal of Production Research, 39(13), 2867–2894. doi: 10.1080/00207540110054579
  • Chaumette, F. (1998). Potential problems of stability and convergence in image-based and position-based visual servoing. In D. J. Kriegman, G. D. Hagerand & A. S. Morse (Eds.), The confluence of vision and control (Vol. 237, pp. 66–78). London: Springer.
  • Chaumette, F., & Hutchinson, S. (2008). Visual servoing and visual tracking. In B. Siciliano & O. Khatib (Eds.), Springer Handbook of Robotics (pp. 563–583). Berlin: Springer Berlin Heidelberg.
  • Chen, J., Dawson, D. M., Dixon, W. E., & Chitrakaran, V. K. (2007). Navigation function-based visual servo control. Automatica, 43(7), 1165–1177. doi: 10.1016/j.automatica.2006.12.018
  • Chesi, G., Hashimoto, K., Prattichizzo, D., & Vicino, A. (2004). Keeping features in the field of view in eye-in-hand visual servoing: A switching approach. IEEE Transactions on Robotics, 20(5), 908–913. doi: 10.1109/TRO.2004.829456
  • Chiaverini, S., Oriolo, G., & Walker, I. (2008). Kinematically redundant manipulators. In B. Siciliano & O. Khatib (Eds.), Springer Handbook of Robotics (pp. 245–268). Berlin: Springer Berlin Heidelberg.
  • Corke, P. (2011). Robotics, vision and control: Fundamental algorithms in MATLAB. Berlin: Springer-Verlag.
  • Corke, P.I., & Hutchinson, S.A. (2001). A new partitioned approach to image-based visual servo control. IEEE Transactions on Robotics and Automation, 17(4), 507–515. doi: 10.1109/70.954764
  • Dantzig, G. (2016). Linear programming and extensions. Princeton: Princeton University Press.
  • Du, G., & Zhang, P. (2013). Online robot calibration based on vision measurement. Robotics and Computer-Integrated Manufacturing, 29(6), 484–492. doi: 10.1016/j.rcim.2013.05.003
  • Edwards, C., & Spurgeon, S. (1998). Sliding mode control: Theory and applications (1st ed.). London: Taylor & Francis.
  • Fakhry, H.H., & Wilson, W.J. (1996). A modified resolved acceleration controller for position-based visual servoing. Mathematical and Computer Modelling, 24(5–6), 1–9. doi: 10.1016/0895-7177(96)00112-4
  • Gans, N. R., & Hutchinson, S. A. (2007). Stable visual servoing through hybrid switched-system control. IEEE Transactions on Robotics, 23(3), 530–540. doi: 10.1109/TRO.2007.895067
  • Garelli, F., Mantz, R., & De Battista, H. (2011). Advanced control for constrained processes and systems. London: IET, Control Engineering Series.
  • Golub, G., & Van Loan, C. (1996). Matrix computations (3rd ed.). Baltimore, MD: The Johns Hopkins University.
  • Gordic, Z., & Ongaro, C. (2016). Calibration of robot tool centre point using camera-based system. Serbian Journal of Electrical Engineering, 13(1), 9–20. doi: 10.2298/SJEE1601009G
  • Gracia, L., Garelli, F., & Sala, A. (2013). Reactive sliding-mode algorithm for collision avoidance in robotic systems. IEEE Transactions on Control Systems Technology, 21(6), 2391–2399. doi: 10.1109/TCST.2012.2231866
  • Gracia, L., Sala, A., & Garelli, F. (2012). A path conditioning method with trap avoidance. Robotics and Autonomous Systems, 60(6), 862–873. doi: 10.1016/j.robot.2012.01.009
  • Hafez, A. H. A., & Jawahar, C. (2007). Visual servoing by optimization of a 2D/3D hybrid objective function. Paper presented at the Proceedings 2007 IEEE international conference on robotics and automation, Roma, 2007, pp. 1691–1696.
  • Hashemi, H., Shaharouna, A. M., Sudin, I., Bijan, G., Zafar, N., & Saeed, S. (2014). Fixture design automation and optimization techniques: Review and future trends. International Journal of Engineering, 27(11), 00–00.
  • Huang, Y., Zhang, X., & Fang, Y. (2014). Vision-based minimum-time planning of mobile robots with kinematic and visibility constraints. IFAC Proceedings Volumes, 47(3), 11878–11883. doi: 10.3182/20140824-6-ZA-1003.01791
  • Hutchinson, S., Hager, G. D., & Corke, P. I. (1996). A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, 12(5), 651–670. doi: 10.1109/70.538972
  • Kazemi, M., Gupta, K. K., & Mehrandezh, M. (2013). Randomized kinodynamic planning for robust visual servoing. IEEE Transactions on Robotics, 29(5), 1197–1211. doi: 10.1109/TRO.2013.2264865
  • Kermorgant, O., & Chaumette, F. (2011). Combining IBVS and PBVS to ensure the visibility constraint. Paper presented at the 2011 IEEE/RSJ international conference on intelligent robots and systems (pp. 2849–2854). San Francisco, CA.
  • Keshmiri, M., Xie, W., & Mohebbi, A. (2014). Augmented image-based visual servoing of a manipulator using acceleration command. IEEE Transactions on Industrial Electronics, 61(10), 5444–5452. doi: 10.1109/TIE.2014.2300048
  • Khalil, W., & Dombre, E. (2002). Modeling, identification and control of robots. Bristol, PA: Taylor & Francis Inc.
  • Kim, D., Lovelett, R., Wang, Z., & Behal, A. (2009). A region-based switching scheme for practical visual servoing under limited FOV and dynamically changing features. IASTED 14th International Conference on Robotics and Applications. Cambridge, MA.
  • Latombe, J. C. (1991). Robot motion planning. Boston: Kluwer.
  • Marchand, E., Spindler, F., & Chaumette, F. (2005). ViSP for visual servoing: A generic software platform with a wide class of robot control skills. IEEE Robotics and Automation Magazine, 12(4), 40–52. doi: 10.1109/MRA.2005.1577023
  • Menani, K., Mohammadridha, T., Magdelaine, N., Abdelaziz, M., & Moog, C. H. (2017). Positive sliding mode control for blood glucose regulation. International Journal of Systems Science, 48(15), 3267–3278. doi: 10.1080/00207721.2017.1381893
  • Mobayen, S., Tchier, F., & Ragoub, L. (2017). Design of an adaptive tracker for n-link rigid robotic manipulators based on super-twisting global nonlinear sliding mode control. International Journal of Systems Science, 48(9), 1990–2002. doi: 10.1080/00207721.2017.1299812
  • Motta, J. M. S., de Carvalho, G. C., & McMaster, R. (2001). Robot calibration using a 3d vision-based measurement system with a single camera. Robotics and Computer-Integrated Manufacturing, 17(6), 487–497. doi: 10.1016/S0736-5845(01)00024-2
  • Muñoz-Vázquez, A., Parra-Vega, V., & Sánchez-Orta, A. (2017). A novel continuous fractional sliding mode control. International Journal of Systems Science, 48(13), 2901–2908. doi: 10.1080/00207721.2017.1348564
  • Nakamura, Y., Hanafusa, H., & Yoshikawa, T. (1987). Task-priority based redundancy control of robot manipulators. The International Journal of Robotics Research, 6(2), 3–15. doi: 10.1177/027836498700600201
  • Ouyang, P., Zhang, W., Gupta, M. M., & Zhao, W. (2007). Overview of the development of a visual based automated bio-micromanipulation system. Mechatronics, 17(10), 578–588. doi: 10.1016/j.mechatronics.2007.06.002
  • Pehlivan, S., & Summers, J. D. (2008). A review of computer-aided fixture design with respect to information support requirements. International Journal of Production Research, 46(4), 929–947. doi: 10.1080/00207540600865386
  • Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2009). Robotics: Modelling, planning and control. London: Springer-Verlag.
  • Siciliano, B., & Slotine, J. (1991). A general framework for managing multiple tasks in highly redundant robotic systems. Proceedings of the fifth international conference on advanced robotics (ICAR'91) (pp. 1211–1216). Pisa, Italy.
  • Utkin, V., Guldner, J., & Shi, J. (2009). Sliding mode control in electro-mechanical systems (2nd ed.). London: Taylor & Francis.
  • Yin, S., Ren, Y., Zhu, J., Yang, S., & Ye, S. (2013). A vision-based self-calibration method for robotic visual inspection systems. Sensors (Basel, Switzerland), 13(12), 16565–16582. doi: 10.3390/s131216565
  • Zhong, X., Zhong, X., & Peng, X. (2015). Robots visual servo control with features constraint employing Kalman-neural-network filtering scheme. Neurocomputing, 151, 268–277. doi: 10.1016/j.neucom.2014.09.043

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.