319
Views
15
CrossRef citations to date
0
Altmetric
Articles

Observer-based adaptive fuzzy tracking control for a class of MIMO nonlinear systems with unknown dead zones and time-varying delays

, , &
Pages 546-562 | Received 08 Jun 2018, Accepted 17 Dec 2018, Published online: 07 Jan 2019

References

  • Boulkrounea, A., Tadjineb, M., Saadc, M., & Farza, M. (2008). How to design a fuzzy adaptive controller based on observers for uncertain affine nonlinear systems. Fuzzy Sets and Systems, 159, 926–948. doi: 10.1016/j.fss.2007.08.015
  • Boyd, S., Ghaoui, L. E., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Philadelphia, PA: SIAM.
  • Chang, X. H., Li, Z. M., & Park, J. H. (2018). Fuzzy generalized H2 filtering for nonlinear discrete-time systems with measurement quantisation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48, 2419–2430. doi: 10.1109/TSMC.2017.2743012
  • Chang, W. J., Lin, C. H., & Ku, C. C. (2015). Estimated state feedback fuzzy control for passivity discrete time-delay multiplicative noised pendulum systems. Journal of Marine Science and Technology, 23, 98–108.
  • Chang, X. H., Park, J. H., & Shi, P. (2017). Fuzzy resilient energy-to-peak filtering for continuous-time nonlinear systems. IEEE Transactions on Fuzzy Systems, 25, 1576–1588. doi: 10.1109/TFUZZ.2016.2612302
  • Chen, J., Gu, K., & Kharitonov, V. L. (2003). Stability of time-delay systems. Boston, MA: Birkhauser.
  • Chen, B., Lin, C., Liu, X., & Liu, K. (2015). Adaptive fuzzy tracking control for a class of MIMO nonlinear systems in nonstrict-feedback form. IEEE Transactions on Cybernetics, 45, 2744–2755. doi: 10.1109/TCYB.2014.2383378
  • Chen, B., Lin, C., Liu, X., & Liu, K. (2016). Observer-based adaptive fuzzy control for a class of nonlinear delayed systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46, 27–36. doi: 10.1109/TSMC.2015.2420543
  • Chen, B., Liu, X., & Lin, C. (2018). Observer and adaptive fuzzy control design for nonlinear strict-feedback systems with unknown virtual control coefficients. IEEE Transactions on Fuzzy Systems, 26, 1732–1743. doi: 10.1109/TFUZZ.2017.2750619
  • Chen, J., Yang, C., Lien, C., & Horng, J. (2008). New delay-dependent non-fragile H∞ observer-based control for continuous time-delay systems. Information Sciences, 178, 4699–4706. doi: 10.1016/j.ins.2008.08.009
  • Chen, B., Zhang, H. G., & Lin, C. (2015). Observer-based adaptive neural network control for nonlinear systems in nonstrict-feedback form. IEEE Transactions on Neural Networks and Learning Systems, 27, 89–98. doi: 10.1109/TNNLS.2015.2412121
  • Chen, B., Zhang, H., Liu, X. P., & Lin, C. (2018). Neural observer and adaptive neural control design for a class of nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, 29, 4261–4271. doi: 10.1109/TNNLS.2017.2760903
  • Choi, D. J., & Park, P. G. (2007). H∞ state-feedback controller design for discrete-time fuzzy systems using fuzzy weighting-dependent Lyapunov functions. IEEE Transactions on Fuzzy Systems, 11, 271–278. doi: 10.1109/TFUZZ.2003.809903
  • Cui, R., Ge, S. S., How, B. V. E., & Choo, Y. S. (2010). Leader-follower formation control of underactuated autonomous underwater vehicles. Ocean Engineering, 37, 1491–1502. doi: 10.1016/j.oceaneng.2010.07.006
  • Feng, G. (2004). Stability analysis of discrete-time fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Transactions on Fuzzy Systems, 12, 22–28. doi: 10.1109/TFUZZ.2003.819833
  • Feng, G., Chen, C. L., Sun, D., & Zhu, Y. (2005). H∞ controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions and bilinear matrix inequalities. IEEE Transactions on Fuzzy Systems, 13, 94–103. doi: 10.1109/TFUZZ.2004.839662
  • Ge, S. S., Li, Z., & Yang, H. (2012). Data driven adaptive predictive control for holonomic constrained under-actuated biped robots. IEEE Transactions on Control Systems Technology, 20, 787–795. doi: 10.1109/TCST.2011.2145378
  • Ge, S. S., Ren, B., Tee, K. P., & Lee, T. H. (2009). Approximation-based control of uncertain helicopter dynamics. IET Control Theory and Applications, 3, 941–956. doi: 10.1049/iet-cta.2008.0103
  • Ge, C., Wang, H., Liu, Y., & Park, J. H. (2017). Improved stabilization criteria for fuzzy systems under variable sampling. Journal of the Franklin Institute, 354, 5839–5853. doi: 10.1016/j.jfranklin.2017.07.024
  • Guerra, T. M., & Vermeiren, L. (2004). LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form. Automatica, 40, 823–829. doi: 10.1016/j.automatica.2003.12.014
  • Hua, C., Wang, Q., & Guan, X. (2008). Adaptive tracking controller design of nonlinear systems with time delays and unknown dead-zone input. IEEE Transactions on Automatic Control, 53, 1753–1759. doi: 10.1109/TAC.2008.928324
  • Islam, S. I., Lim, C. C., & Shi, P. (2018). Functional observer-based fuzzy controller design for continuous nonlinear systems. International Journal of Systems Science, 49, 1047–1060. doi: 10.1080/00207721.2018.1440026
  • Johansson, M., Rantzer, A., & Arzen, K. E. (2002). Piecewise quadratic stability of fuzzy systems. IEEE Transactions on Fuzzy Systems, 7, 713–722. doi: 10.1109/91.811241
  • Kanelakopoulos, I., Kokotovic, P. V., & Morse, A. S. (1991). Systematic design of adaptive controllers for feedback linearizable systems. IEEE Transactions on Automatic Control, 36, 1241–1253. doi: 10.1109/9.100933
  • Krstić, M., Kanelakopoulos, I., & Kokotovic, P. V. (1995). Nonlinear and adaptive control design. New York, NY: John Wiley and Sons.
  • Li, Z., Chen, Z., Fu, J., & Sun, C. (2016). Direct adaptive controller for uncertain MIMO dynamic systems with time-varying delay and dead-zone inputs. Automatica, 63, 287–291. doi: 10.1016/j.automatica.2015.10.036
  • Li, D. P., & Li, D. J. (2018). Adaptive neural tracking control for an uncertain state constrained robotic manipulator with unknown time-varying delays. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48, 2219–2228. doi: 10.1109/TSMC.2017.2703921
  • Li, Z., Li, T., & Feng, G. (2016). Adaptive neural control for a class of stochastic nonlinear time-delay systems with unknown dead zone using dynamic surface technique. International Journal of Robust and Nonlinear Control, 26, 759–781. doi: 10.1002/rnc.3336
  • Li, Z., Li, T., Feng, G., Zhao, R., & Shan, Q. (2018). Neural network-based adaptive control for pure-feedback stochastic nonlinear systems with time-varying delays and dead-zone input. International Journal of Robust and Nonlinear Control. doi:10.1109/TSMC.2018.2872421
  • Li, T. S., Li, Z., Wang, D., & Chen, C. L. P. (2015). Output-feedback adaptive neural control for stochastic nonlinear time-varying delay systems with unknown control directions. IEEE Transactions on Neural Networks and Learning Systems, 26, 1188–1201. doi: 10.1109/TNNLS.2014.2334638
  • Li, L., & Liu, X. (2009). New results on delay-dependent robust stability criteria of uncertain fuzzy systems with state and input delays. Information Sciences, 179, 1134–1148. doi: 10.1016/j.ins.2008.11.039
  • Li, H., & Tong, S. (2003). A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems. IEEE Transactions on Fuzzy Systems, 11, 24–34. doi: 10.1109/TFUZZ.2002.806314
  • Li, Y. M., Tong, S. C., & Li, T. S. (2015). Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control direction and unknown dead-zones fuzzy systems. IEEE Transactions on Fuzzy Systems, 23, 1228–1241. doi: 10.1109/TFUZZ.2014.2348017
  • Li, Y. M., Tong, S. C., & Li, T. S. (2016). Hybrid fuzzy adaptive output feedback control design for uncertain mimo nonlinear systems with time-varying delays and input saturation. IEEE Transactions on Fuzzy Systems, 24, 841–853. doi: 10.1109/TFUZZ.2015.2486811
  • Liu, L., Liu, Y. J., & Tong, S. C. (2018). Neural networks-based adaptive finite-time fault-tolerant control for a class of strict-feedback switched nonlinear systems. IEEE Transactions on Cybernetics. doi:10.1109/TCYB.2018.2828308
  • Liu, Y.-J., Lu, S., Tong, S., Chen, X., Chen, C. L. P., & Li, D.-J. (2018). Adaptive control-based barrier Lyapunov functions for a class of stochastic nonlinear systems with full state constraints. Automatica, 87, 83–93. doi: 10.1016/j.automatica.2017.07.028
  • Liu, Y. L., Niu, B., Chu, F., & Liu, Y. Y. (2016). Adaptive fuzzy output-feedback tracking control for a class of switched stochastic nonlinear time-delay systems. Circuits Systems and Signal Processing, 35, 2762–2788. doi: 10.1007/s00034-015-0174-6
  • Liu, Y. J., & Tong, S. C. (2017). Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems. Automatica, 76, 143–152. doi: 10.1016/j.automatica.2016.10.011
  • Ma, Z., Li, Y., & Tong, S. C. (2017). Observer-based fuzzy adaptive fault control for a class of MIMO nonlinear systems. International Journal of Systems Science, 48, 1331–1346. doi: 10.1080/00207721.2016.1261306
  • Mamdani, E. H. (1974). Application of fuzzy algorithms for control of simple dynamic plant. Proceedings of the Institution of Electrical Engineers, 121, 1585–1588. doi: 10.1049/piee.1974.0328
  • Na, J., Ren, X., Herrmann, G., & Qiao, Z. (2011). Adaptive neural dynamic surface control for servo systems with unknown dead-zone. Control Engineering Practice, 19, 1328–1343. doi: 10.1016/j.conengprac.2011.07.005
  • Nguyen, X. B., Komatsuzaki, T., Iwata, Y., & Asanuma, H. (2018). Modeling and semi-active fuzzy control of magnetorheological elastomer-based isolator for seismic response reduction. Mechanical Systems and Signal Processing, 101, 449–466. doi: 10.1016/j.ymssp.2017.08.040
  • Ren, J., & Zhang, X. (2013). Adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear system using command filtering. In Control conference (pp. 3392–3396), IEEE, Xi'an, China.
  • Rong, H. J., Yang, Z., Wong, P. K., Vong, C. M., & Zhao, G. (2017). A novel meta-cognitive fuzzy-neural model with backstepping strategy for adaptive control of uncertain nonlinear systems. Neurocomputing, 230, 332–344. doi: 10.1016/j.neucom.2016.12.030
  • Shyu, K.-K., Liu, W.-J., & Hsu, K.-C. (2005). Design of large-scale time-delayed systems with dead-zone input via variable structure control. Automatica, 41, 1239–1246. doi: 10.1016/j.automatica.2005.03.004
  • Sui, S., Tong, S. C., & Li, Y. M. (2014). Adaptive fuzzy backstepping output feedback tracking control of MIMO stochastic pure-feedback nonlinear systems with input saturation. Fuzzy Sets and Systems, 254, 26–46. doi: 10.1016/j.fss.2014.03.013
  • Tanaka, K., Hori, T., & Wang, H. O. (2003). A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Transactions on Fuzzy Systems, 11, 582–589. doi: 10.1109/TFUZZ.2003.814861
  • Tanaka, K., Ohtake, H., & Wang, H. O. (2007). A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions. IEEE Transactions on Fuzzy Systems, 15, 333–341. doi: 10.1109/TFUZZ.2006.880005
  • Tanaka, K., & Wang, H. O. (2001). Fuzzy control systems design and analysis: A linear matrix inequality approach. New York: Wiley-Interscience.
  • Tang, L., Liu, Y. J., & Chen, C. L. P. (2018). Adaptive critic design for pure-feedback discrete-Time MIMO systems preceded by unknown backlashlike hysteresis. IEEE Transactions on Neural Networks and Learning Systems, 29, 5681–5690. doi: 10.1109/TNNLS.2018.2805689
  • Todeschini, F., Formentin, S., Panzani, G., Corno, M., Savaresi, S. M., & Zaccarian, L. (2016). Nonlinear pressure control for BBW systems via dead-zone and antiwindup compensation. IEEE Transactions on Control Systems Technology, 24, 1419–1431. doi: 10.1109/TCST.2015.2483562
  • Tong, S. C., & Li, Y. M. (2013). Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs. IEEE Transactions on Fuzzy Systems, 21, 134–146. doi: 10.1109/TFUZZ.2012.2204065
  • Tong, S. C., Li, Y. M., Feng, G., & Li, T. S. (2011). Observer-based adaptive fuzzy backstepping dynamic surface control for a class of non-linear systems with unknown time delays. IET Control Theory and Applications, 5, 1426–1438. doi: 10.1049/iet-cta.2010.0632
  • Tong, S. C., Li, Y. M., & Zhang, H. (2011). Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time delays. IEEE Transactions on Neural Networks, 22, 1073–1086. doi: 10.1109/TNN.2011.2146274
  • Tong, S. C., Sui, S., & Li, Y. M. (2015). Fuzzy adaptive output feedback control of MIMO nonlinear systems with partial tracking errors constrained. IEEE Transactions on Fuzzy Systems, 23, 729–742. doi: 10.1109/TFUZZ.2014.2327987
  • Tong, S. C., Xu, Y., & Li, Y. M. (2015). Adaptive fuzzy decentralised control for stochastic nonlinear large-scale systems in pure-feedback form. International Journal of Systems Science., 46, 1510–1524.
  • Tong, S. C., Zhang, L., & Li, Y. M. (2016). Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale systems with dead zones. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46, 37–47. doi: 10.1109/TSMC.2015.2426131
  • Wang, L. X. (1994). Adaptive fuzzy systems and control: Design and stability analysis. Englewood Cliffs, NJ: Prentice-Hall.
  • Wang, Y., Chai, T., & Zhang, Y. (2010). State observer-based adaptive fuzzy output-feedback control for a class of uncertain nonlinear systems. Information Sciences, 180, 5029–5040. doi: 10.1016/j.ins.2010.08.046
  • Wang, H., Chen, B., Lin, C., & Sun, Y. (2016). Observer-based adaptive neural control for a class of nonlinear pure-feedback systems. Neurocomputing, 171, 1517–1523. doi: 10.1016/j.neucom.2015.07.103
  • Wang, F., Chen, B., Lin, C., Zhang, J., & Meng, X. (2017). Adaptive neural network finite-time output feedback control of quantized nonlinear systems. IEEE Transactions on Cybernetics, 48, 1839–1848. doi: 10.1109/TCYB.2017.2715980
  • Wang, H. Q., Liu, X., & Liu, K. (2016). Adaptive fuzzy tracking control for a class of pure-feedback stochastic nonlinear systems with non-lower triangular structure. Fuzzy Sets and Systems, 302, 101–120. doi: 10.1016/j.fss.2015.10.001
  • Wang, L. X., & Mendel, J. M. (1992). Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Transactions on Neural Networks, 3, 807–814. doi: 10.1109/72.159070
  • Wang, H. O., Tanaka, K., & Griffin, M. F. (2002). An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Transactions on Fuzzy Systems, 4, 14–23. doi: 10.1109/91.481841
  • Wang, Y. C., Zhang, H. G., & Wang, Y. Z. (2006). Fuzzy adaptive control of stochastic nonlinear systems with unknown virtual control gain function. Acta Automatica Sinica, 32, 170–178.
  • Wang, Y. C., Zhang, H. G., & Wang, Y. Z. (2010). Observer-based fuzzy adaptive control for non-linear time-varying delay systems with unknown control direction. IET Control Theory and Applications, 4, 2757–2769. doi: 10.1049/iet-cta.2009.0351
  • Wu, H. (2017). Decentralised adaptive robust control schemes of uncertain large-scale time-delay systems with multiple unknown dead-zone inputs. IET Control Theory and Applications, 11, 1360–1370. doi: 10.1049/iet-cta.2016.1277
  • Wu, L. B., He, X. Q., Zhang, D. Q., & Jia, H. W. (2018). Adaptive H-infinity fault-tolerant control for a class of uncertain switched nonlinear systems with multiple state time delays. International Journal of Systems Science, 49, 1784–1794. doi: 10.1080/00207721.2018.1479004
  • Wu, S. M., Sun, C. C., Chung, H. Y., & Chang, W. J. (2006). Discrete H2/H∞ nonlinear controller design based on fuzzy region concept and Takagi-Sugeno fuzzy framework. IEEE Transactions on Circuits and Systems I: Regular Papers, 53, 2838–2848. doi: 10.1109/TCSI.2006.883868
  • Wu, L. B., & Yang, G. (2018). Adaptive output fuzzy fault accommodation for a class of uncertain nonlinear systems with multiple time delays. IEEE Transactions on Fuzzy Systems, 26, 1052–1057. doi: 10.1109/TFUZZ.2017.2687405
  • Yousef, H., Hamdy, M., & Shafiqh, M. (2012). Adaptive fuzzy based tracking control for a class of strict-feedback SISO nonlinear time-delay systems without back-stepping. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 20, 339–353. doi: 10.1142/S0218488512500171
  • Yue, H., & Li, J. (2012). Output-feedback adaptive fuzzy control for a class of non-linear time-varying delay systems with unknown control directions. IET Control Theory and Applications, 6, 1266–1280. doi: 10.1049/iet-cta.2011.0226
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353. doi: 10.1016/S0019-9958(65)90241-X
  • Zhang, T. P., & Ge, S. S. (2007). Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs. Automatica, 43, 1021–1033. doi: 10.1016/j.automatica.2006.12.014
  • Zhang, H., & Liu, D. (2006). Application of fuzzy algorithms for control of simple dynamic plant. Technometrics, 50, 408–409.
  • Zhou, J. (2008). Decentralized adaptive control for large-scale time-delay systems with dead-zone input. Automatica, 44, 1790–1799. doi: 10.1016/j.automatica.2007.10.037
  • Zhou, Q., Hi, P. S., Xu, S. Y., & Li, H. Y. (2013). Observer-based adaptive neural network control for nonlinear stochastic systems with time delay. IEEE Transactions on Neural Networks and Learning Systems, 24, 71–80. doi: 10.1109/TNNLS.2012.2223824
  • Zhou, Q., Wang, L., Wu, C., & Li, H. (2017). Adaptive fuzzy tracking control for a class of pure-feedback nonlinear systems with time-varying delay and unknown dead zone. Fuzzy Sets and Systems, 329, 36–60. doi: 10.1016/j.fss.2016.11.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.