261
Views
6
CrossRef citations to date
0
Altmetric
Articles

Coordinated circumnavigation by multiple agents under directed topology

, ORCID Icon, &
Pages 2616-2631 | Received 11 Jun 2018, Accepted 18 Sep 2019, Published online: 09 Oct 2019

References

  • Arranz, L. B., Seuret, A., & De Wit, C. C. (2009). Translation control of a fleet circular formation of AUVs under finite communication range. The 48th IEEE conference on decision and control, held jointly with the 28th Chinese control conference (pp. 8345–8350). Shanghai: IEEE.
  • Berman, A., & Plemmons, R. J. (1979). Nonnegative matrices in the mathematical sciences. New York: Academic press.
  • Cao, Y. (2015). UAV circumnavigating an unknown target under a GPS-denied environment with range-only measurements. Automatica, 55, 150–158. doi: 10.1016/j.automatica.2015.03.007
  • Chen, H., Chang, K., & Agate, C. S. (2013). UAV path planning with tangent-plus-Lyapunov vector field guidance and obstacle avoidance. IEEE Transactions on Aerospace and Electronic Systems, 49, 840–856. doi: 10.1109/TAES.2013.6494384
  • Cui, L., Chen, S., & Wang, L. (2017). Distributed control for multi-target circumnavigation by a group of agents. International Journal of Systems Science, 48, 2565–2574. doi: 10.1080/00207721.2017.1324921
  • Deghat, M., Shames, I., Anderson, B. D., & Yu, C. (2014). Localization and circumnavigation of a slowly moving target using bearing measurements. IEEE Transactions on Automatic Control, 59, 2182–2188. doi: 10.1109/TAC.2014.2299011
  • Frew, E. W., Lawrence, D. A., & Morris, S. (2008). Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields. Journal of Guidance, Control, and Dynamics, 31, 290–306. doi: 10.2514/1.30507
  • Ghommam, J., Fethalla, N., & Saad, M. (2016). Quadrotor circumnavigation of an unknown moving target using camera vision-based measurements. IET Control Theory and Applications, 10, 1874–1887. doi: 10.1049/iet-cta.2015.1246
  • Khalil, H. K., & Grizzle, J. (2002). Nonlinear systems (Vol. 3). Upper Saddle River, NJ: Prentice-Hall.
  • Lan, Y., Yan, G., & Lin, Z. (2009). A hybrid control approach to cooperative target tracking with multiple mobile robots. American control conference (pp. 2624–2629). St. Louis, MO: IEEE.
  • Lawrence, D. (2003). Lyapunov vector fields for UAV flock coordination. 2nd AIAA “Unmanned Unlimited” conference and workshop and exhibit. Reston, VA.
  • Li, S., & Tian, Y.-P. (2007). Finite-time stability of cascaded time-varying systems. International Journal of Control, 80, 646–657. doi: 10.1080/00207170601148291
  • Ma, L., Cao, C., Hovakimyan, N., Dobrokhodov, V., & Kaminer, I. (2010). Adaptive vision-based guidance law with guaranteed performance bounds. Journal of Guidance, Control, and Dynamics, 33, 834–852. doi: 10.2514/1.46287
  • Mallik, G. R., Daingade, S., & Sinha, A. (2015). Consensus based deviated cyclic pursuit for target tracking applications. European control conference (pp. 1718–1723). Linz: IEEE.
  • Marasco, A. J., Givigi, S. N., & Rabbath, C. A. (2012). Model predictive control for the dynamic encirclement of a target. American control conference (pp. 2004–2009). Montréal: IEEE.
  • Matveev, A. S., Semakova, A. A., & Savkin, A. V. (2017). Tight circumnavigation of multiple moving targets based on a new method of tracking environmental boundaries. Automatica, 79, 52–60. doi: 10.1016/j.automatica.2017.01.041
  • Mei, J., Ren, W., & Chen, J. (2016). Distributed consensus of second-order multi-agent systems with heterogeneous unknown inertias and control gains under a directed graph. IEEE Transactions on Automatic Control, 61, 2019–2034. doi: 10.1109/TAC.2015.2480336
  • Miao, Z., Wang, Y., & Fierro, R. (2017). Cooperative circumnavigation of a moving target with multiple nonholonomic robots using backstepping design. Systems and Control Letters, 103, 58–65. doi: 10.1016/j.sysconle.2017.03.004
  • Milutinović, D., Casbeer, D., Cao, Y., & Kingston, D. (2017). Coordinate frame free dubins vehicle circumnavigation using only range-based measurements. International Journal of Robust and Nonlinear Control, 27, 2937–2960. doi: 10.1002/rnc.3718
  • Oh, H., Kim, S., Shin, H.-S., Tsourdos, A., & White, B. A. (2014). Behaviour recognition of ground vehicle using airborne monitoring of unmanned aerial vehicles. International Journal of Systems Science, 45, 2499–2514. doi: 10.1080/00207721.2013.772677
  • Oh, H., Kim, S., Shin, H.-S., White, B. A., Tsourdos, A., & Rabbath, C. A. (2013). Rendezvous and standoff target tracking guidance using differential geometry. Journal of Intelligent and Robotic Systems, 69, 389–405. doi: 10.1007/s10846-012-9751-0
  • Olfati-Saber, R., & Murray, R. M. (2004). Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 49, 1520–1533. doi: 10.1109/TAC.2004.834113
  • Park, S. (2017). Guidance law for standoff tracking of a moving object. Journal of Guidance, Control, and Dynamics, 40, 2948–2955. doi: 10.2514/1.G002707
  • Qu, Z. (2009). Cooperative control of dynamical systems. London: Springer-Verlag.
  • Ren, W. (2007). Multi-vehicle consensus with a time-varying reference state. Systems and Control Letters, 56, 474–483. doi: 10.1016/j.sysconle.2007.01.002
  • Ren, W., & Beard, R. W. (2004). Trajectory tracking for unmanned air vehicles with velocity and heading rate constraints. IEEE Transactions on Control Systems Technology, 12, 706–716. doi: 10.1109/TCST.2004.826956
  • Shames, I., Dasgupta, S., Fidan, B., & Anderson, B. D. (2012). Circumnavigation using distance measurements under slow drift. IEEE Transactions on Automatic Control, 57, 889–903. doi: 10.1109/TAC.2011.2173417
  • Shao, J., & Tian, Y. (2018). Multi-target localisation and circumnavigation by a multi-agent system with bearing measurements in 2D space. International Journal of Systems Science, 49, 15–26. doi: 10.1080/00207721.2017.1397803
  • Summers, T. H., Akella, M. R., & Mears, M. J. (2009). Coordinated standoff tracking of moving targets: Control laws and information architectures. Journal of Guidance, Control, and Dynamics, 32, 56–69. doi: 10.2514/1.37212
  • Vidyasagar, M. (1980). Decomposition techniques for large-scale systems with nonadditive interactions: Stability and stabilizability. IEEE Transactions on Automatic Control, 25, 773–779. doi: 10.1109/TAC.1980.1102422
  • Wang, C., & Xie, G. (2017). Limit-cycle based decoupled design of circle formation control with collision avoidance for anonymous agents in a plane. IEEE Transactions on Automatic Control, 62, 6560–6567. doi: 10.1109/TAC.2017.2712758
  • Yu, X., & Liu, L. (2016). Distributed circular formation control of ring-networked nonholonomic vehicles. Automatica, 68, 92–99. doi: 10.1016/j.automatica.2016.01.056
  • Yu, X., & Liu, L. (2017). Cooperative control for moving-target circular formation of nonholonomic vehicles. IEEE Transactions on Automatic Control, 62, 3448–3454. doi: 10.1109/TAC.2016.2614348
  • Zhang, Y., Liu, G., & Luo, B. (2014). Finite-time cascaded tracking control approach for mobile robots. Information Sciences, 284, 31–43. doi: 10.1016/j.ins.2014.06.037
  • Zheng, R., Lin, Z., Fu, M., & Sun, D. (2015). Distributed control for uniform circumnavigation of ring-coupled unicycles. Automatica, 53, 23–29. doi: 10.1016/j.automatica.2014.11.012
  • Zhu, S., Wang, D., & Low, C. B. (2013). Ground target tracking using UAV with input constraints. Journal of Intelligent and Robotic Systems, 69, 417–429. doi: 10.1007/s10846-012-9737-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.