216
Views
7
CrossRef citations to date
0
Altmetric
Regular papers

Optimal error governor for PID controllers

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2480-2492 | Received 14 Nov 2019, Accepted 09 Feb 2021, Published online: 02 Mar 2021

References

  • Ang, K. H., Chong, G., & Li, Y. (2005). PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology, 13(4), 559–576. https://doi.org/10.1109/TCST.2005.847331
  • Angeli, D., & Mosca, E. (1999). Command governors for constrained nonlinear systems. IEEE Transactions on Automatic Control, 44(4), 816–820. https://doi.org/10.1109/9.754825
  • Åström, K., & Hägglund, T. (2005). Advanced PID control. ISA – The Instrumentation, Systems, and Automation Society.
  • Åström, K. J., & Hägglund, T. (1995). PID controllers: Theory, design, and tuning (Vol. 2). Instrument Society of America.
  • Åström, K. J., & Hägglund, T. (2001). The future of PID control. Control Engineering Practice, 9(11), 1163–1175. https://doi.org/10.1016/S0967-0661(01)00062-4
  • Astrom, K. J., & Rundqwist, L. (1989). Integrator windup and how to avoid it. In 1989 American Control Conference (ACC) (pp. 1693–1698). IEEE. https://doi.org/10.23919/acc.1989.4790464
  • Azar, A. T., & Serrano, F. E. (2015). Design and modeling of anti-wind up PID controllers. In Q. Zhu & A. Azar (Eds.), Complex system modelling and control through intelligent soft computations (pp. 1–44). Springer. https://doi.org/10.1007/978-3-319-12883-2_1
  • Bemporad, A. (1998). Reference governor for constrained nonlinear systems. IEEE Transactions on Automatic Control, 43(3), 415–419. https://doi.org/10.1109/9.661611
  • Berner, J., Soltesz, K., Åström, K. J., & Hägglund, T. (2017). Practical evaluation of a novel multivariable relay autotuner with short and efficient excitation. In 2017 IEEE Conference on Control Technology and Applications (CCTA) (pp. 1505–1510). IEEE. https://doi.org/10.1109/CCTA.2017.8062671
  • Berner, J., Soltesz, K., Hägglund, T., & Åström, K. J. (2018). An experimental comparison of PID autotuners. Control Engineering Practice, 73(6), 124–133. https://doi.org/10.1016/j.conengprac.2018.01.006
  • Casavola, A., Franzè, G., Menniti, D., & Sorrentino, N. (2011). Voltage regulation in distribution networks in the presence of distributed generation: A voltage set-point reconfiguration approach. Electric Power Systems Research, 81(1), 25–34. https://doi.org/10.1016/j.epsr.2010.07.009
  • Cavanini, L., Cimini, G., & Ippoliti, G. (2016). Model predictive control for the reference regulation of current mode controlled DC-DC converters. In 2016 IEEE 14th International Conference on Industrial Informatics (INDIN) (pp. 74–79). IEEE. http://doi.org/10.1109/INDIN.2016.7819137
  • Cavanini, L., Cimini, G., & Ippoliti, G. (2017). A fast model predictive control algorithm for linear parameter varying systems with right invertible input matrix. In 2017 25th Mediterranean Conference on Control and Automation (MED) (pp. 42–47). IEEE. http://doi.org/10.1109/MED.2017.7984093
  • Cavanini, L., Cimini, G., Ippoliti, G., & Bemporad, A. (2017). Model predictive control for pre-compensated voltage mode controlled DC–DC converters. IET Control Theory & Applications, 11(15), 2514–2520. https://doi.org/10.1049/cth2.v11.15
  • Cavanini, L., Colombo, L., Ippoliti, G., & Orlando, G. (2017). Development and experimental validation of a LQG control for a pre-compensated multi-axis piezosystem. In 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE) (pp. 460–465). IEEE. http://doi.org/10.1109/ISIE.2017.8001290
  • Chaiyatham, T., & Ngamroo, I. (2017). Improvement of power system transient stability by PV farm with fuzzy gain scheduling of PID controller. IEEE Systems Journal, 11(3), 1684–1691. https://doi.org/10.1109/JSYST.2014.2347393
  • Cimini, G., & Bemporad, A. (2017). Exact complexity certification of active-set methods for quadratic programming. IEEE Transactions on Automatic Control, 62(12), 6094–6109. https://doi.org/10.1109/TAC.2017.2696742
  • Cimini, G., & Bemporad, A. (2019). Complexity and convergence certification of a block principal pivoting method for box-constrained quadratic programs. Automatica, 100(5), 29–37. https://doi.org/10.1016/j.automatica.2018.10.050
  • da Silva, J. M. G., & Tarbouriech, S. (2004). Anti-windup design with guaranteed regions of stability for discrete-time linear systems. In Proceedings of the 2004 American Control Conference (Vol. 6, pp. 5298–5303). IEEE. https://doi.org/10.23919/ACC.2004.1384694
  • da Silva, J. M. G., & Tarbouriech, S. (2005). Antiwindup design with guaranteed regions of stability: An LMI-based approach. IEEE Transactions on Automatic Control, 50(1), 106–111. https://doi.org/10.1109/TAC.2004.841128
  • Ferreau, H. J., Almér, S., Verschueren, R., Diehl, M., Frick, D., Domahidi, A., & Jones, C. (2017). Embedded optimization methods for industrial automatic control. IFAC-PapersOnLine, 50(1), 13194–13209. https://doi.org/10.1016/j.ifacol.2017.08.1946
  • Garone, E., Di Cairano, S., & Kolmanovsky, I. (2017). Reference and command governors for systems with constraints: A survey on theory and applications. Automatica, 75(9), 306–328. https://doi.org/10.1016/j.automatica.2016.08.013
  • Gomes da Silva, J. M., Paim, C., & Castelan, E. B. (2001). Stability and stabilization of linear discrete-time systems subject to control saturation. IFAC Proceedings Volumes, 34(13), 525–530. https://doi.org/10.1016/S1474-6670(17)39045-6 1st (IFAC Symposium on System Structure and Control 2001, Prague, Czechoslovakia, 2001, August 27–31)
  • Hodel, A. S., & Hall, C. E. (2001). Variable-structure PID control to prevent integrator windup. IEEE Transactions on Industrial Electronics, 48(2), 442–451. https://doi.org/10.1109/41.915424
  • Izadbakhsh, A., Kalat, A. A., Fateh, M., & Rafiei, M. (2011). A robust anti-windup control design for electrically driven robots – Theory and experiment. International Journal of Control, Automation and Systems, 9(5), 1005–1012. https://doi.org/10.1007/s12555-011-0524-5
  • Izadbakhsh, A., & Kheirkhahan, P. (2018a). Nonlinear PID control of electrical flexible joint robots-theory and experimental verification. In 2018 IEEE International Conference on Industrial Technology (ICIT) (pp. 250–255). IEEE. https://doi.org/10.1109/ICIT.2018.8352185
  • Izadbakhsh, A., & Kheirkhahan, P. (2018b). On the voltage-based control of robot manipulators revisited. International Journal of Control, Automation and Systems, 16(4), 1887–1894. https://doi.org/10.1007/s12555-017-0035-0
  • Kahveci, N. E., & Kolmanovsky, I. V. (2010). Constrained control using error governors with online parameter estimation. In 49th IEEE Conference on Decision and Control (CDC) (pp. 5186–5191). IEEE. https://doi.org/10.1109/CDC.2010.5717968
  • Kapasouris, P., Athans, M., & Stein, G. (1988). Design of feedback control systems for stable plants with saturating actuators. In Proceedings of the 27th IEEE Conference on Decision and Control (Vol. 1, pp. 469–479). IEEE. https://doi.org/10.1109/CDC.1988.194356
  • Khalil, H. K. (1992). Nonlinear systems (1st ed.). Prentice-Hall.
  • Knospe, C. (2006). PID control. IEEE Control Systems, 26(1), 30–31. https://doi.org/10.1109/MCS.2006.1580151
  • Kolmanovsky, I., Garone, E., & Di Cairano, S. (2014). Reference and command governors: A tutorial on their theory and automotive applications. In 2014 American Control Conference (ACC) (pp. 226–241). IEEE. https://doi.org/10.1109/ACC.2014.6859176
  • Li, X. L., Park, J. G., & Shin, H. B. (2011). Comparison and evaluation of anti-windup PI controllers. Journal of Power Electronics, 11(1), 45–50. https://doi.org/10.6113/JPE.2011.11.1.045
  • Liu, G., & Daley, S. (2001). Optimal-tuning PID control for industrial systems. Control Engineering Practice, 9(11), 1185–1194. https://doi.org/10.1016/S0967-0661(01)00064-8
  • Mercader, P., Åström, K. J., Banos, A., & Hägglund, T. (2017). Robust PID design based on QFT and convex–concave optimization. IEEE Transactions on Control Systems Technology, 25(2), 441–452. https://doi.org/10.1109/TCST.2016.2562581
  • Pannocchia, G., Laachi, N., & Rawlings, J. B. (2005). A candidate to replace PID control: SISO-constrained LQ control. AIChE Journal, 51(4), 1178–1189. https://doi.org/10.1002/(ISSN)1547-5905
  • Shi, C. X., & Yang, G. H. (2018). Robust consensus control for a class of multi-agent systems via distributed PID algorithm and weighted edge dynamics. Applied Mathematics and Computation, 316(10), 73–88. https://doi.org/10.1016/j.amc.2017.07.069
  • Skogestad, S. (2003). Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control, 13(4), 291–309. https://doi.org/10.1016/S0959-1524(02)00062-8
  • Song, Y., Huang, X., & Wen, C. (2017). Robust adaptive fault-tolerant PID control of MIMO nonlinear systems with unknown control direction. IEEE Transactions on Industrial Electronics, 64(6), 4876–4884. https://doi.org/10.1109/TIE.2017.2669891
  • Tarbouriech, S. (2014). Stability and stabilization of linear systems with saturating actuators. Springer.
  • Tharayil, M., & Alleyne, A. (2002). Active supersonic flow control using hysteresis compensation and error governor. IFAC Proceedings Volumes, 35(1), 205–210. https://doi.org/10.3182/20020721-6-ES-1901.01259
  • Theorin, A., & Hägglund, T. (2015). Derivative backoff: The other saturation problem for PID controllers. Journal of Process Control, 33(10), 155–160. https://doi.org/10.1016/j.jprocont.2015.06.008
  • Wang, H., Xiao, Z. W., Liu, H. B., & Liu, L. T. (2015). Multimode parameter fuzzy self-tuning PID precise temperature control system. In Fifth Asia International Symposium on Mechatronics (AISM 2015) (pp. 1–4). IEEE. https://doi.org/10.1049/cp.2015.1533

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.