352
Views
8
CrossRef citations to date
0
Altmetric
Regular papers

Prescribed performance output feedback synchronisation control of bilateral teleoperation system with actuator nonlinearities

&
Pages 3115-3127 | Received 19 Jan 2021, Accepted 19 Apr 2021, Published online: 03 May 2021

References

  • Aboutalebian, B., Talebi, H. A., Etedali, S., & Suratgar, A. A. (2020). Adaptive control of teleoperation system based on nonlinear disturbance observer. European Journal of Control, 53, 109–116.
  • Baranitha, R., Rakkiyappan, R., Mohajerpoor, R., & Al-Wais, S. (2018). Stability analysis of nonlinear telerobotic systems with time-varying communication channel delays using general integral inequalities. Information Sciences, 465, 353–372.
  • Bavili, R. E., Akbari, A., & Esfanjani, R. M. (2020). Passivity-based control of nonlinear teleoperation systems with non-passive interaction forces. Intelligent Service Robotics, 13, 419–437.
  • Brizzi, F., Peppoloni, L., Graziano, A., Stefano, E. D., Avizzano, C. A., & Ruffaldi, E. (2018). Effects of augmented reality on the performance of teleoperated Industrial assembly tasks in a robotic embodiment. IEEE Transactions on Human-Machine Systems, 48(2), 197–206.
  • Chen, H., Huang, P., Liu, Z., & Ma, Z. (2020). Time delay prediction for space telerobot system with a modified sparse multivariate linear regression method. Acta Astronautica, 166, 330–341.
  • Chen, Z., Huang, F., Sun, W., Gu, J., & Yao, B. (2020). RBF-neural-network-based adaptive robust control for nonlinear bilateral teleoperation manipulators with uncertainty and time delay. IEEE/ASME Transactions on Mechatronics, 25(2), 906–918.
  • Chen, Z., Huang, F., Yang, C., & Yao, B. (2020). Adaptive fuzzy backstepping control for stable nonlinear bilateral teleoperation manipulators with enhanced transparency performance. IEEE Transactions on Industrial Electronics, 67(1), 746–756.
  • Chen, D., Zhou, X., Li, J., He, J., Yu, X., Zhang, L., & Qi, W. (2020). A muscle teleoperation system of a robotic rollator based on bilateral shared control. IEEE Access, 8, 151160–151170.
  • Cui, Q., Huang, J., & Gao, T. (2020). Adaptive leaderless consensus control of uncertain multiagent systems with unknown control directions. International Journal of Robust and Nonlinear Control, 30(15), 6229–6240.
  • Ghavifekr, A. A., Ghiasi, A. R., Badamchizadeh, M. A., & Hashemzadeh, F. (2020). Exponential stability of bilateral sampled-data teleoperation systems using multirate approach. ISA Transactions, 105, 190-197.
  • Gong, Y., Wu, B., & Ji, Y. (2020). Synchronization analysis of bilateral teleoperation system with quantization and saturation. In 2020 39th Chinese Control Conference (CCC) ,4604–4609.
  • Hu, S. C., & Liu, Y. C. (2020, February). Event-triggered control for adaptive bilateral teleoperators with communication delays. IET Control Theory & Applications, 14(10), 427–437.
  • Hua, C., Liu, G., Zhang, L., & Guan, X. (2016). Output feedback tracking control for nonlinear time-delay systems with tracking errors and input constraints. Neurocomputing, 173, 751–758.
  • Hua, C., Wang, Y., Yang, Y., & Guan, X. (2020). Force feedback control for bilateral teleoperation system with unknown Prandtl-Ishlinskii hysteresis. Journal of the Franklin Institute, 357(13), 8321–8341.
  • Ji, Y., Liu, D., & Guo, Y. (2019). Adaptive neural network based position tracking control for Dual-master/Single-slave teleoperation system under communication constant time delays. ISA Transactions, 93, 80–92.
  • Kebria, P. M., Khosravi, A., Jalali, S. M. J., & Nahavandi, S. (2019). Adaptive type-2 fuzzy control scheme for robust teleoperation under time-varying delay and uncertainties. In 2019 IEEE 15th International Conference on Automation Science and Engineering (case) , 1631–1636.
  • Kebria, P. M., Khosravi, A., Nahavandi, S., Shi, P., & Alizadehsani, R. (2020). Robust adaptive control scheme for teleoperation systems with delay and uncertainties. IEEE Transactions on Cybernetics, 50(7), 3243–3253.
  • Kebria, P. M., Khosravi, A., Nahavandi, S., Watters, D., Guest, G., & Shi, P. (2019). Robust adaptive control of internet-based bilateral teleoperation systems with time-varying delay and model uncertainties. In 2019 IEEE International Conference on Industrial Technology (ICIT) , 187–192.
  • Kebria, P. M., Khosravi, A., Nahavandi, S., Wu, D., & Bello, F. (2020). Adaptive type-2 fuzzy neural-network control for teleoperation systems with delay and uncertainties. IEEE Transactions on Fuzzy Systems.28(10), 2543–2554.
  • Khan, H., Abbasi, S. J., & Lee, M. C. (2020). DPSO and inverse jacobian-based real-Time inverse kinematics with trajectory tracking using integral SMC for teleoperation. IEEE Access, 8, 159622–159638.
  • Kim, H., Hwang, M., Kim, J., You, J. M., Lim, C. S., & Kwon, D. S. (2020). Effect of backlash hysteresis of surgical tool bending joints on task performance in teleoperated flexible endoscopic robot. The International Journal of Medical Robotics and Computer Assisted Surgery, 16(1), e2047.
  • Li, Y., Yin, Y., Zhang, S., Dong, J., & Johansson, R. (2020). Composite adaptive control for bilateral teleoperation systems without persistency of excitation. Journal of the Franklin Institute, 357(2), 773–795.
  • Li, Y., Zhang, K., Liu, K., Johansson, R., & Yin, Y. (2019). Neural-network-based adaptive control for bilateral teleoperation with multiple slaves under Round-Robin scheduling protocol. International Journal of Control. doi:10.1080/00207179.2019.1652853
  • Liu, X., & Tavakoli, M. (2018). Bilateral adaptive control of nonlinear teleoperation systems with uncertain dynamics and dead-zone. Journal of Dynamic Systems, Measurement, and Control, 140(12), 121004-1–12100410.
  • Mohammadi, L., & Alfi, A. (2019). Guaranteed cost control in delayed teleoperation systems under actuator saturation. Iran J Sci Technol Trans Electr Eng, 43, 827–835.
  • Mohammadi, A., & Dallali, H. (2020). Chapter 5–Disturbance observer applications in rehabilitation robotics: An overview. In H. Dallali, E. Demircan, and M. Rastgaar (Eds.), Powered prostheses , 113–133. Academic Press.
  • Rasouli, P., Forouzantabar, A., Moattari, M., & Azadi, M. (2020). Disturbance Observer-Based control of master and slave systems with input saturation. Aut. Control Comp. Sci., 54, 19–29.
  • Rasouli, P., Forouzantabar, A., Moattari, M., & Azadi, M. (2020). Fault-Tolerant control of teleoperation systems with flexible-LinkSlave robot and disturbance compensation. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 13, 419–437.
  • Sanner, R. M., & Slotine, J. E. (1991). Gaussian networks for direct adaptive control. In 1991 American Control Conference (pp. 2153–2159).
  • Shen, Q., Shi, P., Agarwal, R. K., & Shi, Y. (2020). Adaptive neural network-based filter design for nonlinear systems with multiple constraints. IEEE Transactions on Neural Networks and Learning Systems. doi:10.1109/TNNLS.2020.3009391.
  • Shen, Q., Yan, S., Jia, R., & Shi, P. (2021). Design on type-2 fuzzy-based distributed supervisory control with backlash-like hysteresis. IEEE Transactions on Fuzzy Systems, 29(2), 252–261. https://doi.org/https://doi.org/10.1109/TFUZZ.91
  • Song, Y.-D., & Zhou, S. (2018). Tracking control of uncertain nonlinear systems with deferred asymmetric time-varying full state constraints. Automatica, 98, 314–322.
  • Sun, D., Kiselev, A., Liao, Q., Stoyanov, T., & Loutfi, A. (2020). A new mixed-Reality-Based teleoperation system for telepresence and maneuverability enhancement. IEEE Transactions on Human-Machine Systems, 50(1), 55–67.
  • Sun, D., Liao, Q., & Loutfi, A. (2020). Single master bimanual teleoperation system with efficient regulation. IEEE Transactions on Robotics, 36(4), 1022–1037.
  • Sun, D., Naghdy, F., & Du, H. (2017). Time domain passivity control of time-delayed bilateral telerobotics with prescribed performance. Nonlinear Dynamics, 87, 1253–1270.
  • Wang, Z., Chen, Z., Liang, B., & Zhang, B. (2018). A novel adaptive finite time controller for bilateral teleoperation system. Acta Astronautica, 144, 263–270.
  • Wang, Z., Chen, Z., Zhang, Y., Yu, X., Wang, X., & Liang, B. (2019). Adaptive finite-time control for bilateral teleoperation systems with jittering time delays. International Journal of Robust and Nonlinear Control, 29(4), 1007–1030.
  • Wang, Z., Lam, H., Xiao, B., Chen, Z., Liang, B., & Zhang, T. (2020). Event-Triggered prescribed-Time fuzzy control for space teleoperation systems subject to multiple constraints and uncertainties. IEEE Transactions on Fuzzy Systems, 1–13. https://doi.org/doi.org/10.1109/TFUZZ.2020.3007438
  • Wang, Z., Liang, B., Sun, Y., & Zhang, T. (2020). Adaptive fault-Tolerant prescribed-Time control for teleoperation systems with position error constraints. IEEE Transactions on Industrial Informatics, 16(7), 4889–4899.
  • Wang, H., Liu, P. X., & Liu, S. (2017). Adaptive neural synchronization control for bilateral teleoperation systems with time delay and backlash-Like hysteresis. IEEE Transactions on Cybernetics, 47(10), 3018–3026.
  • Wang, Z., Sun, Y., & Liang, B. (2019). Synchronization control for bilateral teleoperation system with position error constraints: A fixed-time approach. ISA Transactions, 93, 125–136.
  • Yang, Y., Ge, C., Wang, H., Li, X., & Hua, C. (2015). Adaptive neural network based prescribed performance control for teleoperation system under input saturation. Journal of the Franklin Institute, 352(5), 1850–1866.
  • Yang, Y., Hua, C., & Guan, X. (2015). Synchronization control for bilateral teleoperation system with prescribed performance under asymmetric time delay. Nonlinear Dynamics, 81, 481–493.
  • Yang, Y., Hua, C., Li, J., & Guan, X. (2017). Finite-time output-feedback synchronization control for bilateral teleoperation system via neural networks. Information Sciences, 406–407, 216–233.
  • Yang, Y., Li, J., Hua, C., & Guan, X. (2018). Adaptive synchronization control design for flexible telerobotics with actuator fault and input saturation. International Journal of Robust and Nonlinear Control, 28(3), 1016–1034. https://doi.org/https://doi.org/10.1002/rnc.v28.3
  • Yang, X., Yan, J., Hua, C., & Guan, X. (2020). Effects of quantization and saturation on performance in bilateral teleoperator. International Journal of Robust and Nonlinear Control, 30(1), 121–141.
  • Zakerimanesh, A., Hashemzadeh, F., & Tavakoli, M. (2020). Task-space synchronisation of nonlinear teleoperation with time-varying delays and actuator saturation. International Journal of Control, 93(6), 1328–1344.
  • Zakerimanesh, A., Hashemzadeh, F., Torabi, A., & Tavakoli, M. (2019). A cooperative paradigm for task-space control of multilateral nonlinear teleoperation with bounded inputs and time-varying delays. Mechatronics, 62, 102255.
  • Zhai, D., & Xia, Y. (2018). A novel switching-Based control framework for improved task performance in teleoperation system with asymmetric time-varying delays. IEEE Transactions on Cybernetics, 48(2), 625–638.
  • Zhang, H., Song, A., Li, H., & Shen, S. (2019). Novel adaptive finite-time control of teleoperation system with time-Varying delays and input saturation. IEEE Transactions on Cybernetics, PP(99):1–14. doi:10.1109/TCYB.2019.2924446.
  • Zhao, Z., Ahn, C. K., & Li, H. (L2020). Dead zone compensation and adaptive vibration control of uncertain spatial flexible riser systems. IEEE/ASME Transactions on Mechatronics, 25(3), 1398–1408.
  • Zhao, L., Liu, L., Wang, Y., & Yang, H. (2019). Active disturbance rejection control for teleoperation systems with actuator saturation. Asian Journal of Control, 21(2), 702–713.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.