185
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Membership-function-dependent memory controller design for interval type-2 fuzzy systems under fading channels

, , ORCID Icon, &
Pages 295-312 | Received 10 May 2022, Accepted 05 Sep 2022, Published online: 03 Oct 2022

References

  • Amini, F., & Khaloozadeh, H. (2017). Robust fuzzy stabilisation of interval plants. International Journal of Systems Science, 48(2), 436–450. https://doi.org/10.1080/00207721.2016.1186244
  • Cao, E. Z., Zhang, B. L., Cai, Z. H., Wang, B. R., & Li, Q. (2021). Memory-event-triggering H∞ reliable control for networked jacket platforms against earthquakes and stochastic actuator faults. International Journal of Systems Science, 52(6), 1171–1191. https://doi.org/10.1080/00207721.2021.1883765
  • Chadli, M., & Karimi, H. R. (2013). Robust observer design for unknown inputs Takagi–Sugeno models. IEEE Transactions on Fuzzy Systems, 21(1), 158–164. https://doi.org/10.1109/TFUZZ.91
  • Ding, D., Wang, Z., Shen, B., & Dong, H. (2015). Envelope-constrained H∞ filtering with fading measurements and randomly occurring nonlinearities: The finite horizon case. Automatica, 55, 37–45. https://doi.org/10.1016/j.automatica.2015.02.024
  • Dong, J., Hou, Q., & Ren, M. (2020). Control synthesis for discrete-time T-S fuzzy systems based on membership function-dependent H∞ performance. IEEE Transactions on Fuzzy Systems, 28(12), 3360–3366. https://doi.org/10.1109/TFUZZ.91
  • Ebihara, Y., Peaucelle, D., & Arzelier, D. (2011). Periodically time-varying memory state-feedback controller synthesis for discrete-time linear systems. Automatica, 47(1), 14–25. https://doi.org/10.1016/j.automatica.2010.10.004
  • Feng, G. (2006). A survey on analysis and design of model-based fuzzy control systems. IEEE Transactions on Fuzzy Systems, 14(5), 676–697. https://doi.org/10.1109/TFUZZ.2006.883415
  • Han, K. Y., Lee, S. W., Lim, J. S., & Sung, K. M. (2004). Channel estimation for OFDM with fast fading channels by modified Kalman filter. IEEE Transactions on Consumer Electronics, 50(2), 443–449. https://doi.org/10.1109/TCE.2004.1309406
  • Han, Y. Y., & Zhou, S. S. (2020). Performance analysis and extended dissipative controller design for ito stochastic-delayed IT2 fuzzy models. International Journal of Systems Science, 51(9), 1511–1527. https://doi.org/10.1080/00207721.2020.1762258
  • Hu, B. (2021). Stochastic stability analysis for vehicular networked systems with state-dependent bursty fading channels: A self-triggered approach. Automatica, 123, 109352. https://doi.org/10.1016/j.automatica.2020.109352
  • Ji, W., Qiu, J., & Karimi, H. R. (2020). Fuzzy-model-based output feedback sliding-mode control for discrete-time uncertain nonlinear systems. IEEE Transactions on Fuzzy Systems, 28(8), 1519–1530. https://doi.org/10.1109/TFUZZ.91
  • Jiang, B., Karimi, H. R., Kao, Y., & Gao, C. (2020). Adaptive control of nonlinear semi-markovian jump T-S fuzzy systems with immeasurable premise variables via sliding mode observer. IEEE Transactions on Cybernetics, 50(2), 810–820. https://doi.org/10.1109/TCYB.6221036
  • Lam, H. K. (2018). A review on stability analysis of continuous-time fuzzy-model-based control systems: From membership-function-independent to membership-function-dependent analysis. Engineering Applications of Artificial Intelligence, 67, 390–408. https://doi.org/10.1016/j.engappai.2017.09.007
  • Lam, H. K., & Leung, F. H. F. (2005). Stability analysis of fuzzy control systems subject to uncertain grades of membership. IEEE Transactions on Systems, Man, and Cybernetics, 35(6), 1322–1325. https://doi.org/10.1109/TSMCB.2005.850181
  • Lam, H. K., Li, H., L. Secco, C. D. E., Wurdemann, H. A., & Althoefer, K. (2014). Control design for interval type-2 fuzzy systems under imperfect premise matching. IEEE Transactions on Fuzzy Systems, 61(2), 958–968. https://doi.org/10.1109/TIE.2013.2253064
  • Lam, H. K., & Narimani, M. (2009). Stability analysis and performance design for fuzzy-model-based control under imperfect premise matching. IEEE Transactions on Fuzzy Systems, 17(4), 949–961. https://doi.org/10.1109/TFUZZ.2008.928600
  • Lam, H. K., & Narimani, M. (2010). Quadratic-stability analysis of fuzzy-model-based control systems using staircase membership functions. IEEE Transactions on Fuzzy Systems, 18(1), 125–137. https://doi.org/10.1109/TFUZZ.2009.2037744
  • Lam, H. K., & Seneviratne, L. D. (2008). Stability analysis of interval type-2 fuzzy-model-based control systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38(3), 617–628. https://doi.org/10.1109/TSMCB.2008.915530
  • Lam, H. K., & Seneviratne, L. D. (2008). Stability analysis of interval type-2 fuzzy-model-based control systems. Journal of the Franklin Institute -- Engineering and Applied Mathematics, 38(3), 617–628. https://doi.org/10.1109/TSMCB.2008.915530
  • Lee, D. H., Joo, Y. H., & Tak, M. H. (2015). Periodically time-varying memory static output feedback control design for discrete-time LTI systems. Automatica, 52, 47–54. https://doi.org/10.1016/j.automatica.2014.10.119
  • Li, J., & Niu, Y. (2019). Sliding mode control subject to rice channel fading. IET Control Theory and Applications, 13(16), 2529–2537. https://doi.org/10.1049/cth2.v13.16
  • Li, X. M., Zhang, B., Li, P. S., Zhou, Q., & Lu, R. Q. (2020). Finite-horizon H∞ state estimation for periodic neural networks over fading channels. IEEE Transactions on Neural Networks and Learning Systems, 31(5), 2162–2388. https://doi.org/10.1109/TNNLS.2019.2920368
  • Mendel, J. M., John, R. I., & Liu, F. (2006). Interval type-2 fuzzy logic systems made simple. IEEE Transactions on Fuzzy Systems, 14(6), 808–821. https://doi.org/10.1109/TFUZZ.2006.879986
  • Mendel, J. M., & John, R. I. B. (2002). Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy Systems, 10(2), 117–127. https://doi.org/10.1109/91.995115
  • Nafir, N., Ahmida, Z., Guelton, K., Bourahala, F., & Rouamel, M. (2021). Improved robust H∞ stability analysis and stabilisation of uncertain and disturbed networked control systems with network-induced delay and packets dropout. International Journal of Systems Science, 52(16), 3493–3510. https://doi.org/10.1080/00207721.2021.1931547
  • Nithya, V., Sakthivel, R., Alzahrani, F., & Ma, Y. K. (2020). Fault-tolerant H∞ filtering for fuzzy networked control systems with quantisation effects. International Journal of Systems Science, 51(7), 1149–1161. https://doi.org/10.1080/00207721.2020.1752416
  • Pan, Y., Du, P., Xue, H., & H. K. Lam (2021). Singularity-free fixed-time fuzzy control for robotic systems with user-defined performance. IEEE Transactions on Fuzzy Systems, 29(8), 2388–2398. https://doi.org/10.1109/TFUZZ.2020.2999746
  • Pan, Y., Li, Q., Liang, H., & Lam, H. K. (2021). A novel mixed control approach for fuzzy systems via membership functions online learning policy. IEEE Transactions on Fuzzy Systems, 30(9), 3812–3822. https://doi.org/10.1109/TFUZZ.2021.3130201
  • Pan, Y., Wu, Y., & Lam, H. K. (2022). Security-based fuzzy control for nonlinear networked control systems with DoS attacks via a resilient event-triggered scheme. IEEE Transactions on Fuzzy Systems. doi: 10.1109/TFUZZ.2022.3148875.
  • Pan, Y., & Yang, G. H. (2021). Event-driven fault detection for discrete-time interval type-2 fuzzy systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(8), 4959–4968. https://doi.org/10.1109/TSMC.2019.2945063
  • Qiu, J., Gao, H., & Ding, S. X. (2016). Recent advances on fuzzy-model-based nonlinear networked control systems: A survey. IEEE Transactions on Industrial Electronics, 63(2), 1207–1217. https://doi.org/10.1109/TIE.2015.2504351
  • Sala, A., & Ariño, C. (2007). Relaxed stability and performance conditions for Takagi–Sugeno fuzzy systems with knowledge on membership function overlap. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(3), 727–732. https://doi.org/10.1109/TSMCB.2006.887949
  • Sala, A., & Ariño, C. (2008). Relaxed stability and performance LMI conditions for Takagi–Sugeno fuzzy systems with polynomial constraints on membership function shapes. IEEE Transactions on Fuzzy Systems, 16(5), 1328–1336. https://doi.org/10.1109/TFUZZ.2008.926585
  • Song, J., Niu, Y., & Wang, S. (2017). Robust finite-time dissipative control subject to randomly occurring uncertainties and stochastic fading measurements. Journal of the Franklin Institute-Engineering and Applied Mathematics, 354(9), 3706–3723. https://doi.org/10.1016/j.jfranklin.2016.07.020
  • Su, L., & Chesi, G. (2018). On the design of output feedback controllers for LTI systems over fading channels. IEEE Transactions on Automatic Control, 63(5), 1503–1508. https://doi.org/10.1109/TAC.2017.2748922
  • Tregouet, J. F., Peaucelle, D., Arzelier, D., & Ebihara, Y. (2013). Periodic memory state-feedback controller: New formulation analysis and design results. IEEE Transactions on Automatic Control, 58(8), 1986–2000. https://doi.org/10.1109/TAC.2013.2251820
  • Wang, M., Feng, G., Qiu, J., Yan, H., & Zhang, H. (2021). Fault detection filtering design for discrete-time interval type-2 T-S fuzzy systems in finite frequency domain. IEEE Transactions on Fuzzy Systems, 29(2), 213–225. https://doi.org/10.1109/TFUZZ.91
  • Wang, M., Lam, H. K., Qiu, J., & Li, Z. (2022). Fuzzy-affine-model based filtering design for continuous-time Roesser-type two-dimensional nonlinear systems. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2022.3163191
  • Wang, M., Qiu, J., & Feng, G. (2018). Finite frequency memory output feedback controller design for T-S fuzzy dynamical systems. IEEE Transactions on Fuzzy Systems, 26(6), 3301–3313. https://doi.org/10.1109/TFUZZ.2018.2821654
  • Wang, M., Qiu, J., & Feng, G. (2020). A novel piecewise affine filtering design for T-S fuzzy affine systems using past output measurements. IEEE Transactions on Cybernetics, 50(4), 1509–1518. https://doi.org/10.1109/TCYB.6221036
  • Wang, M., Qiu, J., Yan, H., Li, Z., & Li, Y. (2022). Static output feedback control for uncertain roesser-type continuous-time two-dimensional piecewise affine systems. Scinece China Information Sciences, 65(11), 219204. https://doi.org/10.1007/s11432-021-3486-9
  • Yuan, C., & Wu, F. (2017). Exact-memory and memoryless control of linear systems with time-varying input delay using dynamic IQCs. Automatica, 77, 246–253. https://doi.org/10.1016/j.automatica.2016.11.015
  • Zhang, C., Lam, H. K., Qiu, J., Liu, C., & Chen, Q. (2019). A new design of membership-function-dependent controller for T-S fuzzy systems under imperfect premise matching. IEEE Transactions on Fuzzy Systems, 27(7), 1428–1440. https://doi.org/10.1109/TFUZZ.91
  • Zhang, S., Wang, Z., Ding, D., Wei, G., Alsaadi, F. E., & Hayat, T. (2018). A gain-scheduling approach to nonfragile H∞ fuzzy control dubject to fading channels. IEEE Transactions on Fuzzy Systems, 26(1), 142–154. https://doi.org/10.1109/TFUZZ.91
  • Zhang, S., Wang, Z., Ding, D., Wei, G., Alsaadi, F. E., & Hayat, T. (2018). A gain-scheduling approach to nonfragile H∞ fuzzy control subject to fading channels. IEEE Transactions on Fuzzy Systems, 26(1), 142–154. https://doi.org/10.1109/TFUZZ.91
  • Zhang, Y., Wang, Z., Zou, L., & Fang, H. (2017). Event-based finite-time filtering for multirate systems with fading measurements. IEEE Transactions on Aerospace and Electronic Systems, 53(3), 1431–1441. https://doi.org/10.1109/TAES.2017.2671498
  • Zhang, Z., Su, S. F., & Niu, Y. (2021). Dynamic event-triggered control for interval type-2 fuzzy systems under fading channel. IEEE Transactions on Cybernetics, 51(11), 5342–5351. https://doi.org/10.1109/TCYB.2020.2996296
  • Zhou, J., Park, J. H., & Kong, Q. (2016). Robust resilient L2 - L∞ control for uncertain stochastic systems with multiple time delays via dynamic output feedback. Journal of the Franklin Institute - Engineering and Applied Mathematics, 353(2016), 3078–3103. https://doi.org/10.1016/j.jfranklin.2016.06.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.