134
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Disturbance observer-based adaptive neural network FTC for a class of nonlinear MASs with an estimated efficiency factor

, , &
Pages 751-767 | Received 02 Aug 2022, Accepted 24 Oct 2022, Published online: 08 Nov 2022

References

  • Abbaspour, A., Yen, K. K., Forouzannezhad, P., & Sargolzaei, A. (2018). A neural adaptive approach for active fault-tolerant control design in UAV. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(9), 3401–3411. https://doi.org/10.1109/TSMC.6221021
  • Dang, A., & Horn, J. (2015). Formation control of leader-following uavs to track a moving target in a dynamic environment. Journal of Automation and Control Engineering, 3(1), 1–8. http://doi.org/10.12720/joace.3.1.1-8
  • Dong, Q., Zhong, M., & Ding, S. X. (2012). Active fault tolerant control for a class of linear time-delay systems in finite frequency domain. International Journal of Systems Science, 43(3), 543–551. https://doi.org/10.1080/00207721.2010.517862
  • Ge, S. S., Hang, C. C., & Zhang, T. (1999). Adaptive neural network control of nonlinear systems by state and output feedback. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 29(6), 818–828. https://doi.org/10.1109/3477.809035
  • Geng, H., Chen, Z. Q., Liu, Z. X., & Zhang, Q. (2015). Consensus of a heterogeneous multi-agent system with input saturation. Neurocomputing, 166, 382–388. https://doi.org/10.1016/j.neucom.2015.03.044
  • Ijaz, S., Yan, L., Hamayun, M. T., & Shi, C. (2019). Active fault tolerant control scheme for aircraft with dissimilar redundant actuation system subject to hydraulic failure. Journal of the Franklin Institute, 356(3), 1302–1332. https://doi.org/10.1016/j.jfranklin.2018.11.018
  • Li, B., Chen, Z. Q., Zhang, C. Y., Liu, Z. X., & Zhang, Q. (2017). Containment control for directed networks multi-agent system with nonlinear dynamics and communication time-delays. International Journal of Control, Automation and Systems, 15(3), 1181–1188. https://doi.org/10.1007/s12555-016-0121-8
  • Li, X., Ho, D. W., & Cao, J. (2019). Finite-time stability and settling-time estimation of nonlinear impulsive systems. Automatica, 99, 361–368. https://doi.org/10.1016/j.automatica.2018.10.024
  • Li, X., Peng, D., & Cao, J. (2020). Lyapunov stability for impulsive systems via event-triggered impulsive control. IEEE Transactions on Automatic Control, 65(11), 4908–4913. https://doi.org/10.1109/TAC.9
  • Li, X., Song, S., & Wu, J. (2019). Exponential stability of nonlinear systems with delayed impulses and applications. IEEE Transactions on Automatic Control, 64(10), 4024–4034. https://doi.org/10.1109/TAC.9
  • Li, Z., Su, C. Y., Wang, L., Chen, Z., & Chai, T. (2015). Nonlinear disturbance observer-based control design for a robotic exoskeleton incorporating fuzzy approximation. IEEE Transactions on Industrial Electronics, 62(9), 5763–5775. https://doi.org/10.1109/TIE.2015.2447498
  • Liu, K., Xie, G., & Wang, L. (2014). Containment control for second-order multi-agent systems with time-varying delays. Systems & Control Letters, 67, 24–31. https://doi.org/10.1016/j.sysconle.2013.12.013
  • Liu, W., & Li, P. (2019). Disturbance observer-based fault-tolerant adaptive control for nonlinearly parameterized systems. IEEE Transactions on Industrial Electronics, 66(11), 8681–8691. https://doi.org/10.1109/TIE.41
  • Liu, W., Ma, Q., Xu, S., & Zhang, Z. (2021). State quantized output feedback control for nonlinear systems via event-triggered sampling. IEEE Transactions on Automatic Control. http://doi.org/10.1109/TAC.2021.3135390.
  • Liu, W., Qi, X., Lu, J., Jia, X., & Li, P. (2019). Finite-time fault-tolerant control for nonlinear systems with input quantization and its application. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(7), 1249–1253. http://doi.org/10.1109/TCSII.2019.2928460
  • Liu, Y. J., Li, J., Tong, S., & Chen, C. P. (2016). Neural network control-based adaptive learning design for nonlinear systems with full-state constraints. IEEE Transactions on Neural Networks and Learning Systems, 27(7), 1562–1571. https://doi.org/10.1109/TNNLS.2015.2508926
  • Liu, Y. J., Ma, L., Liu, L., Tong, S., & Chen, C. P. (2019). Adaptive neural network learning controller design for a class of nonlinear systems with time-varying state constraints. IEEE Transactions on Neural Networks and Learning Systems, 31(1), 66–75. https://doi.org/10.1109/TNNLS.5962385
  • Liu, Y. J., & Tong, S. (2016). Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica, 64, 70–75. https://doi.org/10.1016/j.automatica.2015.10.034
  • Ma, Q. (2017). Cooperative control of multi-agent systems with unknown control directions. Applied Mathematics and Computation, 292, 240–252. https://doi.org/10.1016/j.amc.2016.07.016
  • Mastellone, S., Stipanović, D. M., Graunke, C. R., Intlekofer, K. A., & Spong, M. W. (2008). Formation control and collision avoidance for multi-agent non-holonomic systems: theory and experiments. The International Journal of Robotics Research, 27(1), 107–126. https://doi.org/10.1177/0278364907084441
  • Merheb, A. R., Noura, H., & Bateman, F. (2015). Design of passive fault-tolerant controllers of a quadrotor based on sliding mode theory. International Journal of Applied Mathematics and Computer Science, 25(3), 561–576. https://doi.org/10.1515/amcs-2015-0042
  • Pourdadashi Komachali, F., & Shafiee, M. (2020). Sensor fault diagnosis in fractional-order singular systems using unknown input observer. International Journal of Systems Science, 51(1), 116–132. https://doi.org/10.1080/00207721.2019.1701135
  • Qi, Z., Guangdeng, C., Renquan, L., & Weiwei, B. (2019). Disturbance-observer-based event-triggered control for multi-agent systems with input saturation. Scientia Sinica Informationis, 49(11), 1502–1516. https://doi.org/10.1360/SSI-2019-0105
  • Rahimi, R., Abdollahi, F., & Naqshi, K. (2014). Time-varying formation control of a collaborative heterogeneous multi agent system. Robotics and Autonomous Systems, 62(12), 1799–1805. https://doi.org/10.1016/j.robot.2014.07.005
  • Sasaki, K., & Yang, Z. J. (2020). Disturbance observer-based control of UAVs with prescribed performance. International Journal of Systems Science, 51(5), 939–957. https://doi.org/10.1080/00207721.2020.1746436
  • Shao, J., Shi, L., Zheng, W. X., & Huang, T. Z. (2018). Containment control for heterogeneous multi-agent systems with asynchronous updates. Information Sciences, 436, 74–88. https://doi.org/10.1016/j.ins.2017.12.052
  • Shen, Q., Yue, C., Goh, C. H., & Wang, D. (2018). Active fault-tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults. IEEE Transactions on Industrial Electronics, 66(5), 3763–3772. https://doi.org/10.1109/TIE.2018.2854602
  • Shi, P., & Shen, Q. (2015). Cooperative control of multi-agent systems with unknown state-dependent controlling effects. IEEE Transactions on Automation Science and Engineering, 12(3), 827–834. https://doi.org/10.1109/TASE.2015.2403261
  • Stoustrup, J., & Niemann, H. (2010). Active fault diagnosis by controller modification. International Journal of Systems Science, 41(8), 925–936. https://doi.org/10.1080/00207720903470197
  • Tsai, J. S. H., Yu, T. H., Su, T. J., Guo, S. M., Shieh, L. S., & Canelon, J. I. (2019). A novel on-line OCID method and its application to input-constrained active fault-tolerant tracker design for unknown nonlinear systems. International Journal of Systems Science, 50(14), 2632–2662. https://doi.org/10.1080/00207721.2019.1672117
  • Wang, D., & Huang, J. (2002). Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form. Automatica, 38(8), 1365–1372. https://doi.org/10.1016/S0005-1098(02)00034-1
  • Wang, H., Liu, S., & Yang, X. (2020). Adaptive neural control for non-strict-feedback nonlinear systems with input delay. Information Sciences, 514, 605–616. https://doi.org/10.1016/j.ins.2019.09.043
  • Wang, J. L., & Wu, H. N. (2012). Leader-following formation control of multi-agent systems under fixed and switching topologies. International Journal of Control, 85(6), 695–705. https://doi.org/10.1080/00207179.2012.662720
  • Wang, K., & Jiang, W. (2009). High-dimensional process monitoring and fault isolation via variable selection. Journal of Quality Technology, 41(3), 247–258. https://doi.org/10.1080/00224065.2009.11917780
  • Wang, R., & Wang, J. (2011). Fault-tolerant control with active fault diagnosis for four-wheel independently driven electric ground vehicles. IEEE Transactions on Vehicular Technology, 60(9), 4276–4287. https://doi.org/10.1109/TVT.2011.2172822
  • Wu, J., Li, J., & Chen, W. (2014). Semi-globally/globally stable adaptive NN backstepping control for uncertain MIMO systems with tracking accuracy known a priori. Journal of the Franklin Institute, 351(12), 5274–5309. https://doi.org/10.1016/j.jfranklin.2014.09.008
  • Yang, J., Li, S., Sun, C., & Guo, L. (2013). Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonic vehicles. IEEE Transactions on Aerospace and Electronic Systems, 49(2), 1263–1275. https://doi.org/10.1109/TAES.2013.6494412
  • Yang, P., Xu, M., Li, D., Liu, Z., & Huang, Y. (2019). Distributed fault tolerant consensus control for multi-agent system with actuator fault based on adaptive observer. Transactions of the Institute of Measurement and Control, 41(15), 4207–4217. https://doi.org/10.1177/0142331219853075
  • Yao, X., & Guo, L. (2013). Composite anti-disturbance control for Markovian jump nonlinear systems via disturbance observer. Automatica, 49(8), 2538–2545. https://doi.org/10.1016/j.automatica.2013.05.002
  • Yu, J., Ma, Y., Yu, H., & Lin, C. (2016). Reduced-order observer-based adaptive fuzzy tracking control for chaotic permanent magnet synchronous motors. Neurocomputing, 214, 201–209. https://doi.org/10.1016/j.neucom.2016.05.088
  • Zhang, G., Zhang, H., Huang, X., Wang, J., Yu, H., & Graaf, R. (2015). Active fault-tolerant control for electric vehicles with independently driven rear in-wheel motors against certain actuator faults. IEEE Transactions on Control Systems Technology, 24(5), 1557–1572. https://doi.org/10.1109/TCST.2015.2501354
  • Zhang, J. (2018). Integral barrier Lyapunov functions-based neural control for strict-feedback nonlinear systems with multi-constraint. International Journal of Control, Automation and Systems, 16(4), 2002–2010. https://doi.org/10.1007/s12555-017-0564-6
  • Zhang, L., & Yang, G. H. (2019). Fault-estimation-based output-feedback adaptive FTC for uncertain nonlinear systems with actuator faults. IEEE Transactions on Industrial Electronics, 67(4), 3065–3075. https://doi.org/10.1109/TIE.41
  • Zhang, Y., Sun, J., Liang, H., & Li, H. (2018). Event-triggered adaptive tracking control for multiagent systems with unknown disturbances. IEEE Transactions on Cybernetics, 50(3), 890–901. https://doi.org/10.1109/TCYB.6221036
  • Zheng, Y., & Wang, L. (2014). Containment control of heterogeneous multi-agent systems. International Journal of Control, 87(1), 1–8. https://doi.org/10.1080/00207179.2013.814074
  • Zheng, Y., Zhu, Y., & Wang, L. (2011). Consensus of heterogeneous multi-agent systems. IET Control Theory & Applications, 5(16), 1881–1888. https://doi.org/10.1049/iet-cta.2011.0033
  • Zou, L., Wang, Z., Geng, H., & Liu, X. (2021). Set-membership filtering subject to impulsive measurement outliers: a recursive algorithm. IEEE/CAA Journal of Automatica Sinica, 8(2), 377–388. https://doi.org/10.1109/JAS.6570654
  • Zou, L., Wang, Z., Hu, J., & Dong, H. (2021). Ultimately bounded filtering subject to impulsive measurement outliers. IEEE Transactions on Automatic Control, 67(1), 304–319. https://doi.org/10.1109/TAC.2021.3081256
  • Zou, L., Wang, Z., Hu, J., & Dong, H. (2022). Partial-node-based state estimation for delayed complex networks under intermittent measurement outliers: A multiple-order-holder approach. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3138979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.