143
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Finite-time robust adaptive simultaneous stabilisation of nonlinear time-delay systems with actuator saturation

&
Pages 49-67 | Received 17 Jun 2023, Accepted 02 Oct 2023, Published online: 18 Oct 2023

References

  • Blondel, V. (1994). Simultaneous stabilization of linear systems. Springer-Verlag.
  • Cai, M., & Xiang, Z. (2020). Adaptive practical fast finite-time consensus protocols for multiple uncertain nonlinear mechanical systems. International Journal of Systems Science, 51(11), 1929–1944. https://doi.org/10.1080/00207721.2020.1780515
  • Cai, X. S., Han, Z. Z., & Zhang, W. (2009). Simultaneous stabilization for a collection of multi-input nonlinear systems with uncertain parameters. Acta Automatica Sinica, 35(2), 206–209.
  • Chaudhuri, B., Korba, P., & B. C. Pal (2006). Simultaneous stabilization technique for damping controller design in power systems. Intelligent Automation & Soft Computing, 12(1), 41–49. https://doi.org/10.1080/10798587.2006.10642914
  • Cui, D., Zou, W., Guo, J., & Xiang, Z. (2022a). Adaptive fault-tolerant decentralized tracking control of switched stochastic uncertain nonlinear systems with time-varying delay. International Journal of Adaptive Control and Signal Processing, 36(12), 2971–2987. https://doi.org/10.1002/acs.v36.12
  • Cui, D., Zou, W., Guo, J., & Xiang, Z. (2022b). Neural network-based adaptive finite-time tracking control of switched nonlinear systems with time-varying delay. Applied Mathematics and Computation, 428, 127216. https://doi.org/10.1016/j.amc.2022.127216
  • Cui, J., Yang, R., Pang, C., & Zhang, Q. (2021). Observer-based adaptive robust stabilization of dynamic positioning ship with delay via Hamiltonian method. Ocean Engineering, 222, Article 108439. https://doi.org/10.1016/j.oceaneng.2020.108439
  • Duan, C., & Wu, F. (2016). New results on switched linear systems with actuator saturation. International Journal of Systems Science, 47(5), 1008–1020. https://doi.org/10.1080/00207721.2014.911386
  • Hu, T., Teel, A. R., & Zaccarian, L. (2006). Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions. IEEE Transactions on Automatic Control, 51(11), 1770–1786. https://doi.org/10.1109/TAC.2006.884942
  • Iggidr, A., & Oumoun, M. (2021). Simultaneous stabilization of single-input nonlinear systems with bounded controls. International Journal of Dynamics and Control, 9, 550–556. https://doi.org/10.1007/s40435-020-00658-3
  • Kamen, E. (1982). Linear systems with commensurate time delays: Stability and stabilization independent of delay. IEEE Transactions on Automatic Control, 27(2), 367–375. https://doi.org/10.1109/TAC.1982.1102916
  • Kohan-Sedgh, P., Khayatian, A., & Asemani, M. H. (2016). Conservatism reduction in simultaneous output feedback stabilisation of linear systems. IET Control Theory & Applications, 10(17), 2243–2250. https://doi.org/10.1049/cth2.v10.17
  • Kohan-sedgh, P., Khayatian, A., & Behmanesh-Fard, N. (2020). Simultaneous stabilization of polynomial nonlinear systems via density functions. Journal of the Franklin Institute, 357(3), 1690–1706. https://doi.org/10.1016/j.jfranklin.2019.11.033
  • Li, B., Shu, J., Tao, C., Chen, M., Liu, Z., & Liu, R. (2019). An innovative method for simultaneous stabilization/solidification of PO43- and F- from phosphogypsum using phosphorus ore flotation tailings. Journal of Cleaner Production, 235, 308–316. https://doi.org/10.1016/j.jclepro.2019.06.340
  • Li, S., C. K. Ahn, Chadli, M., & Xiang, Z. (2021). Sampled-data adaptive fuzzy control of switched large-scale nonlinear delay systems. IEEE Transactions on Fuzzy Systems, 30(4), 1014–1024. https://doi.org/10.1109/TFUZZ.2021.3052094
  • Li, X., He, X., Zhang, W., & Xu, X. (2004). Robust H∞ control for uncertain stochastic saturating systems with time delays. Journal of Systems Engineering and Electronics, 15(4), 563–567.
  • Li, Y., & Lin, Z. (2013). Improvements to the linear differential inclusion approach to stability analysis of linear systems with saturated linear feedback. Automatica, 49(3), 821–828. https://doi.org/10.1016/j.automatica.2012.12.002
  • Liao, X., Chen, G., & Sanchez, E. N. (2002). Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach. Neural Networks, 15(7), 855–866. https://doi.org/10.1016/S0893-6080(02)00041-2
  • Long, S., Zhou, L., Zhong, S., & Liao, D. (2022). An improved result for the finite-time stability of the singular system with time delay. Journal of the Franklin Institute, 359(16), 9006–9021. https://doi.org/10.1016/j.jfranklin.2022.09.018
  • Ma, J., Zheng, Z., & Li, P. (2014). Adaptive dynamic surface control of a class of nonlinear systems with unknown direction control gains and input saturation. IEEE Transactions on Cybernetics, 45(4), 728–741. https://doi.org/10.1109/TCYB.6221036
  • Ma, Z., & Huang, P. (2020). Adaptive neural-network controller for an uncertain rigid manipulator with input saturation and full-order state constraint. IEEE Transactions on Cybernetics, 52(5), 2907–2915. https://doi.org/10.1109/TCYB.2020.3022084
  • Mao, J., Huang, S., Xiang, Z., Wang, Y., & Zheng, D. (2021). Practical finite-time sampled-data output consensus for a class of nonlinear multiagent systems via output feedback. International Journal of Robust and Nonlinear Control, 31(3), 920–949. https://doi.org/10.1002/rnc.v31.3
  • Monshizadeh, P., Machado, J. E., Ortega, R., & van Der Schaft, A. (2019). Power-controlled Hamiltonian systems: Application to electrical systems with constant power loads. Automatica, 109, Article 108527. https://doi.org/10.1016/j.automatica.2019.108527
  • Moulay, E., Dambrine, M., Yeganefar, N., & Perruquetti, W. (2008). Finite-time stability and stabilization of time-delay systems. Systems & Control Letters, 57(7), 561–566. https://doi.org/10.1016/j.sysconle.2007.12.002
  • Shi, P., Yang, H., & Zhang, L. (2016). Analysis and design of delta operator systems with nested actuator saturation. International Journal of Systems Science, 47(15), 3704–3710. https://doi.org/10.1080/00207721.2015.1116643
  • Sun, L., Feng, G., & Wang, Y. (2014). Finite-time stabilization and H∞ control for a class of nonlinear Hamiltonian descriptor systems with application to affine nonlinear descriptor systems. Automatica, 50(8), 2090–2097. https://doi.org/10.1016/j.automatica.2014.05.031
  • Sun, W., Lv, X., Wang, K., & Wang, L. (2019). Observer-based output feedback stabilisation and L2-disturbance attenuation of uncertain Hamiltonian systems with input and output delays. International Journal of Systems Science, 50(14), 2565–2578. https://doi.org/10.1080/00207721.2019.1671532
  • Sun, W., Wu, Y., & Lv, X. (2021). Adaptive neural network control for full-state constrained robotic manipulator with actuator saturation and time-varying delays. IEEE Transactions on Neural Networks and Learning Systems, 33(8), 3331–3342. https://doi.org/10.1109/TNNLS.2021.3051946
  • Sun, W. W. (2011). Stabilization analysis of time-delay Hamiltonian systems in the presence of saturation. Applied Mathematics and Computation, 217(23), 9625–9634. https://doi.org/10.1016/j.amc.2011.04.044
  • Wang, G., Wang, X., & Li, S. (2022). Signal generator based finite-time formation control for disturbed heterogeneous multi-agent systems. Journal of the Franklin Institute, 359(2), 1041–1061. https://doi.org/10.1016/j.jfranklin.2021.11.023
  • Wang, Y. (2007). Generalized Hamiltonian control system theory-implementation, control and application. Science Press.
  • Wang, Y., Li, C., & Cheng, D. (2003). Generalized Hamiltonian realization of time-invariant nonlinear systems. Automatica, 39(8), 1437–1443. https://doi.org/10.1016/S0005-1098(03)00132-8
  • Wang, Y., Zhuang, G., Chen, X., Wang, Z., & Chen, F. (2020). Dynamic event-based finite-time mixed H∞ and passive asynchronous filtering for T–S fuzzy singular Markov jump systems with general transition rates. Nonlinear Analysis: Hybrid Systems, 36, Article 100874.
  • Wei, A., & Wang, Y. (2014). Adaptive parallel simultaneous stabilization of a set of uncertain port-controlled Hamiltonian systems subject to actuator saturation. International Journal of Adaptive Control and Signal Processing, 28(11), 1128–1144. https://doi.org/10.1002/acs.v28.11
  • Xie, X., Lam, J., & Li, P. (2018). H∞ control problem of linear periodic piecewise time-delay systems. International Journal of Systems Science, 49(5), 997–1011. https://doi.org/10.1080/00207721.2018.1440028
  • Yang, R., Pei, W., Han, Y., & Sun, L. (2021). Finite-time adaptive robust simultaneous stabilization of nonlinear delay systems by the Hamiltonian function method. Sci China Inform Sci, 64(6), 1–3. https://doi.org/10.1007/s11432-019-2804-2
  • Yang, R., Sun, L., Zhang, G., & Zhang, Q. (2019). Finite-time stability and stabilization of nonlinear singular time-delay systems via Hamiltonian method. Journal of the Franklin Institute, 356(12), 5961–5992. https://doi.org/10.1016/j.jfranklin.2019.04.033
  • Yang, R., & Wang, Y. (2013). Finite-time stability analysis and H∞ control for a class of nonlinear time-delay Hamiltonian systems. Automatica, 49(2), 390–401. https://doi.org/10.1016/j.automatica.2012.11.034
  • Yang, R., Zhang, G., & Sun, L. (2021). Observer-based finite-time robust control of nonlinear time-delay systems via Hamiltonian function method. International Journal of Control, 94(12), 3533–3550. https://doi.org/10.1080/00207179.2020.1774657
  • Yang, X., Li, X., & Cao, J. (2018). Robust finite-time stability of singular nonlinear systems with interval time-varying delay. Journal of the Franklin Institute, 355(3), 1241–1258. https://doi.org/10.1016/j.jfranklin.2017.12.018
  • Yu, J., Shi, P., Dong, W., & Lin, C. (2016). Command filtering-based fuzzy control for nonlinear systems with saturation input. IEEE Transactions on Cybernetics, 47(9), 2472–2479. https://doi.org/10.1109/TCYB.2016.2633367
  • Yu, T., & Chi, W. (2014). Sufficient conditions for simultaneous stabilization of three linear systems within the framework of nest algebras. Journal of the Franklin Institute, 351(12), 5310–5325. https://doi.org/10.1016/j.jfranklin.2014.09.001
  • Zhang, H., & Yang, R. (2022a). Robust simultaneous stabilization of multiple n-degree-of-freedom robot systems. Asian Journal of Control, 24(5), 2702–2713. https://doi.org/10.1002/asjc.v24.5
  • Zhang, H., & Yang, R. (2022b). Adaptive robust simultaneous stabilization of multiple n-degree-of-freedom robot systems. Control Theory and Technology, 20(1), 80–94. https://doi.org/10.1007/s11768-021-00076-6
  • Zhang, T., Bai, R., & Li, Y. (2022). Practically predefined-time adaptive fuzzy quantized control for nonlinear stochastic systems with actuator dead zone. IEEE Transactions on Fuzzy Systems, 31(4), 1240–1253. https://doi.org/10.1109/TFUZZ.2022.3197970
  • Zhang, T., Deng, F., & Shi, P. (2023). Non-fragile finite-time stabilization for discrete mean-field stochastic systems. IEEE Transactions on Automatic Control. https://doi.org/10.1109/TAC.2023.3238849.
  • Zhang, Y., Guo, J., & Xiang, Z. (2022). Finite-time adaptive neural control for a class of nonlinear systems with asymmetric time-varying full-state constraints. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2022.3164948.
  • Zheng, F., Wang, Q. G., & Lee, T. H. (2005). Adaptive robust control of uncertain time delay systems. Automatica, 41(8), 1375–1383. https://doi.org/10.1016/j.automatica.2005.03.014
  • Zou, W., Shi, P., Xiang, Z., & Shi, Y. (2019). Finite-time consensus of second-order switched nonlinear multi-agent systems. IEEE Transactions on Neural Networks and Learning Systems, 31(5), 1757–1762. https://doi.org/10.1109/TNNLS.5962385
  • Zuo, Z., Li, Y., Wang, Y., & Li, H. (2018). Event-triggered control for switched systems in the presence of actuator saturation. International Journal of Systems Science, 49(7), 1478–1490. https://doi.org/10.1080/00207721.2018.1454538

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.