51
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Supervisory-based quantised hands-off control for a class of uncertain systems with nonlinear sector

, , , &
Pages 300-316 | Received 03 Mar 2023, Accepted 02 Oct 2023, Published online: 12 Dec 2023

References

  • Baldi, S., Battistelli, G., Mosca, E., & Tesi, P. (2010). Multi-model unfalsified adaptive switching supervisory control. Automatica, 46(2), 249–259. https://doi.org/10.1016/j.automatica.2009.10.034
  • Basile, F., Cordone, R., & Piroddi, L. (2021). Supervisory control of timed discrete-event systems with logical and temporal specifications. IEEE Transactions on Automatic Control, 67(6), 2800–2815. https://doi.org/10.1109/TAC.2021.3093618
  • Brockett, R. W., & Liberzon, D. (2000). Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control, 45(7), 1279–1289. https://doi.org/10.1109/9.867021
  • Ceragioli, F., & De Persis, C. (2007). Discontinuous stabilization of nonlinear systems: Quantized and switching controls. Systems & Control Letters, 56(7-8), 461–473. https://doi.org/10.1016/j.sysconle.2007.01.001
  • Chua, C. O., Desoer, C. A., & Kuh, E. S. (1987). Linear and nonlinear circuits. McGraw-Hill.
  • Furuta, K., & Pan, Y. (2000). Variable structure control with sliding sector. Automatica, 36(2), 211–228. https://doi.org/10.1016/S0005-1098(99)00116-8
  • Hespanha, J. P., Liberzon, D., & Morse, A. S. (2003a). Hysteresis-based switching algorithms for supervisory control of uncertain systems. Automatica, 39(2), 263–272. https://doi.org/10.1016/S0005-1098(02)00241-8
  • Hespanha, J. P., Liberzon, D., & Morse, A. S. (2003b). Overcoming the limitations of adaptive control by means of logic-based switching. Systems & Control Letters, 49(1), 49–65. https://doi.org/10.1016/S0167-6911(02)00342-0
  • Islam, S. R., Park, S. Y., Zheng, S., & Park, S. M. (2019). Supervisory control for wireless networked power converters in residential applications. Energies, 12(10), 1911. https://doi.org/10.3390/en12101911
  • Iwase, M., & Furuta, K. (2020). Sliding sector control using new equivalent sector control. International Journal of Control, 93(2), 238–251. https://doi.org/10.1080/00207179.2019.1626993
  • Jurdjevic, V., & Quinn, J. P. (1978). Controllability and stability. Journal of Differential Equations, 28, 381–389. https://doi.org/10.1016/0022-0396(78)90135-3
  • Karimoddini, A., Karimadini, M., & Lin, H. (2023). Decentralized modular hybrid supervisory control for the formation of unmanned helicopters. IET Control Theory & Applications, 17(2), 210–222. https://doi.org/10.1049/cth2.v17.2
  • Lamare, P. O. (2019). Supervisory switching control for linear hyperbolic systems. Automatica, 105, 64–70. https://doi.org/10.1016/j.automatica.2019.01.034
  • La Salle, J. P. (1967). An invariance principle in the theory of stability. In J. K. Hale, & J, P, La Salle (Eds.), New York: Academic, 1967, ch. Differential equations and dynamical systems. Little, Brown & Co., Boston.
  • Malisoff, M., & Mazenc, F. (2009). Constructions of strict Lyapunaov functions. Springer Science & Business Media.
  • Mansoorhoseini, P., Mozafari, B., & Mohammadi, S. (2022). Islanded AC/DC microgrids supervisory control: A novel stochastic optimization approach. Electric Power Systems Research, 209, https://doi.org/10.1016/j.epsr.2022.108028 Article 108028.
  • Marsden, J., & Weinstein, A. J. (1981). Calculus unlimited. Benjamin/ Cummings Publishing Company, Inc.
  • Mnazar, M. N., Battistelli, G., & Tesi, S. A. K. (2017). Input-contstrained multi-model unfalsified adaptive switching control. Automatica, 83, 391–395. https://doi.org/10.1016/j.automatica.2017.04.044
  • Okajima, H., Sawada, K., & Matsunaga, N. (2015). Dynamic quantizer design under communication rate constraints. IEEE Transactions on Automatic Control, 61(10), 3190–3196. https://doi.org/10.1109/TAC.9
  • Pan, T. T., Chang, X. H., & Liu, Y. (2022). Robust fuzzy feedback control for non-linear systems with input quantization. IEEE Transactions on Fuzzy Systems, 30(11), 4905–4914. https://doi.org/10.1109/TFUZZ.2022.3163908
  • Pan, Y., Kumar, K. D., Liu, G., & Furuta, K. (2009). Design of variable structure control system with nonlinear time-varying sliding sector. IEEE Transactions on Automatic Control, 54(8), 1981–1986. https://doi.org/10.1109/TAC.2009.2023965
  • Sachan, A., Deveerasetty, K. K., & Soni, S. K. (2021). Design of nonlinear sectors with comparison functions. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(4), 2251–2255.
  • Sachan, A., Gupta, N., Kumar, S., & Kumar Deveerasetty, K. (2022). Switching controller for nonlinear systems: An invariant K,KL sector approach. International Journal of Systems Science, 53(15), 3339–3350. https://doi.org/10.1080/00207721.2022.2081373
  • Sachan, A., Kamal, S., Olaru, S., Singh, D., & Xiong, X. (2020). Discrete-time K,KL sector based hands-off control for nonlinear system. International Journal of Robust and Nonlinear Control, 30(6), 2443–2460. https://doi.org/10.1002/rnc.v30.6
  • Sachan, A., Kamal, S., Singh, D., & Xiong, X. (2019a). A K,KL sector based control design for nonlinear system. ISA Transactions, 89, 77–83. https://doi.org/10.1016/j.isatra.2018.12.017
  • Sachan, A., Kamal, S., Singh, D., & Xiong, X. (2019b). A robustness consideration in continuous time K,KL sector for nonlinear system. IEEE Access, 7, 30628–30636. https://doi.org/10.1109/Access.6287639
  • Sachan, A., Kamal, S., Yu, X., Singh, D., & Xiong, X. (2019). A robust K,KL sector for nonlinear system. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(11), 2547–2551.
  • Sachan, A., Kumar Soni, S., Kumar Goyal, J., Kumar Deveerasetty, K., & Xiong, X. (2023). Quantiser-based Hands-off control for robust K,KL sector. International Journal of Control, 1–13. https://doi.org/10.1080/00207179.2023.2190424
  • Sachan, A., Xiong, X. , Soni, S. K., Kamal, S., & Ghosh, S. (2021). Quantized feedback handsoff control for nonlinear systems. IET Control Theory & Applications, 15(10), 1364–1374. https://doi.org/10.1049/cth2.v15.10
  • Slotine, J. E., & Weiping, L. (1991). Applied nonlinear control (Vol. 199(1)). Prentice Hall.
  • Sun, Y., Li, L., & Ho, D. W. (2019). Quantized synchronization control of networked nonlinear systems: Dynamic quantizer design with event-triggered mechanism. IEEE Transactions on Cybernetics, 53(1), 184–196. https://doi.org/10.1109/TCYB.2021.3090999
  • Tang, F., Wang, H., Chang, X. H., Zhang, L., & Alharbi, K. H. (2023). Dynamic event-triggered control for discrete-time nonlinear Markov jump systems using policy iteration-based adaptive dynamic programming. Nonlinear Analysis: Hybrid Systems, 49, Article 101338.
  • Thakur, A. K., Singh, S. P., Singh, S., & Sachan, A. (2023). Sliding sector-based controller for regulating voltage/frequency in autonomous microgrid. Electric Power Components and Systems, 51(16), 1770–1785. https://doi.org/10.1080/15325008.2023.2207175
  • Valmorbida, G., & Anderson, J. (2017). Region of attraction estimation using invariants sets and rational Lyapunov functions. Automatica, 75, 37–45. https://doi.org/10.1016/j.automatica.2016.09.003
  • Vu, L., & Liberzon, D. (2012). Supervisory control of uncertain systems with quantized information. International Journal of Adaptive Control and Signal Processing, 26(8), 739–756. https://doi.org/10.1002/acs.v26.8
  • Wang, H., Tong, M., Zhao, X., Niu, B., & Yang, M. (2023). Predefined-time adaptive neural tracking control of switched nonlinear systems. IEEE Transactions on Cybernetics, 53(10), 6538–6548. https://doi.org/10.1109/TCYB.2022.3204275
  • Wang, H., Xu, K., & Zhang, H. (2023). Adaptive finite-time tracking control of nonlinear systems with dynamics uncertainties. IEEE Transactions on Automatic Control, 68(9), 5737–5744. https://doi.org/10.1109/TAC.2022.3226703
  • Wang, J., Yang, C., Xia, J., Wu, Z. G., & Shen, H. (2021). Observer-based sliding mode control for networked fuzzy singularly perturbed systems under weighted try-once-discard protocol. IEEE Transactions on Fuzzy Systems, 30(6), 1889–1899. https://doi.org/10.1109/TFUZZ.2021.3070125
  • Xing, L., Wen, C., Liu, Z., Lai, G., & Su, H. (2017). Robust adaptive output feedback control for uncertain systems with quantized input. International Journal of Robust and Nonlinear Control, 27(11), 1999–2016. https://doi.org/10.1002/rnc.v27.11
  • Xue, D., & El-Farra, N. H. (2022). Supervisory event-triggered control of uncertain process networks: Balancing stability and temporal performance. Mathematics, 10(12), 1964. https://doi.org/10.3390/math10121964
  • Xue, Y. M., Yin, L. P., & Zheng, B. C. (2014). Quantized feedback control for a class of uncertain linear systems via supervisory-based sliding mode control. In Proceedings of the 33rd Chinese Control Conference (pp. 4283–4287). IEEE.
  • Zhang, H., Zhao, X., Zhang, L., Niu, B., Zong, G., & Xu, N. (2022). Observer-based adaptive fuzzy hierarchical sliding mode control of uncertain under-actuated switched nonlinear systems with input quantization. International Journal of Robust and Nonlinear Control, 32(14), 7683–7684. https://doi.org/10.1002/rnc.v32.14
  • Zhang, J., Han, Z., & Huang, J. (2014). Homogeneous feedback control of nonlinear systems based on control Lyaponov functions. Asian Journal of Control, 16(4), 1082–1090. https://doi.org/10.1002/asjc.v16.4
  • Zhou, J., Wen, C., & Yang, G. (2013). Adaptive backstepping stabilization of nonlinear uncertain systems with quantized input signal. IEEE Transactions on Automatic Control, 59(2), 460–464. https://doi.org/10.1109/TAC.2013.2270870

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.