77
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Double-loop frame-based adaptive neural sliding-mode control of single-input 3-DOF flexible-joint manipulator

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1177-1190 | Received 15 May 2023, Accepted 27 Dec 2023, Published online: 18 Jan 2024

References

  • Chang, Y.-C., & Wu, M.-F. (2016). Robust tracking control for a class of flexible-joint time-delay robots using only position measurements. International Journal of Systems Science, 47(14), 3336–3349. https://doi.org/10.1080/00207721.2015.1129677
  • Dian, S. Y., Hu, Y., Zhao, T., & Han, J. X. (2019). Adaptive backstepping control for flexible-joint manipulator using interval type-2 fuzzy neural network approximat. Nonlinear Dynamics, 97(2), 1567–1580. https://doi.org/10.1007/s11071-019-05073-8
  • Diao, S. Z., Sun, W., Su, S. F., & Xia, J. W. (2021). Adaptive fuzzy event-triggered control for single-link flexible-joint robots with actuator failures. IEEE Transactions on Cybernetics, 68(7), 6031–6041.
  • Duan, G. R. (2021). High-order fully actuated system approaches: Part II. Generalized strict-feedback systems. International Journal of Systems Science, 52(3), 437–454. https://doi.org/10.1080/00207721.2020.1829168
  • Edwards, C., & Spurgeon, S. (1998). Sliding mode control: Theory and applications. CRC Press.
  • Gao, H., He, W., Zhou, C., & Sun, C. (2019). Neural network control of a two-link flexible robotic manipulator using assumed mode method. IEEE Transactions on Industrial Informatics, 15(2), 755–765. https://doi.org/10.1109/TII.2018.2818120
  • Ge, S. S., Hang, C. C., Lee, T. H., & Zhang, T. (2001). Stable adaptive neural network control. Kluwer Academic Publishers.
  • Ge, S. S., Lee, T. H., & Tan, E. G. (1998). Adaptive neural network control of flexible joint robots based on feedback linearization. International Journal of Systems Science, 29(6), 623–635. https://doi.org/10.1080/00207729808929555
  • He, W., Yan, Z. C., Sun, Y. K., & Ou, Y. S. (2018). Neural-learning-based control for a constrained robotic manipulator with flexible joints. IEEE Transactions on Neural Networks and Learning Systems, 29(12), 5993–6003. https://doi.org/10.1109/TNNLS.5962385
  • Ibrir, S. (2003). Linear time-derivative trackers. Automatica, 40(3), 397–405. https://doi.org/10.1016/j.automatica.2003.09.020
  • Li, J., Ma, K. F., & Wu, Z. J. (2022). Tracking control via switching and learning for a class of uncertain flexible joint robots with variable stiffness actuators. Neurocomputing, 469, 130–137. https://doi.org/10.1016/j.neucom.2021.01.140
  • Li, P., Wang, L., Zhong, B., & Zhang, M. M. (2022). Linear active disturbance rejection control for two-mass systems via singular perturbation approach. IEEE Transactions on Industrial Informatics, 18(5), 3022–3032. https://doi.org/10.1109/TII.2021.3108950
  • Liu, L. X., Yao, W., & Guo, Y. (2021). Prescribed performance tracking control of a free-flying flexible-joint space robot with disturbances under input saturation. Journal of the Franklin Institute, 358(9), 4571–4601. https://doi.org/10.1016/j.jfranklin.2021.03.001
  • Liu, X., Zhao, F., Ge, S. S., Wu, Y. Q., & Mei, X. S. (2019). End-effector force estimation for flexible-joint robots with global friction approximation using neural networks. IEEE Transactions on Industrial Informatics, 15(3), 1730–1741. https://doi.org/10.1109/TII.2018.2876724
  • Liu, Y. Y., Li, Z. J., Su, H., & Su, C. Y. (2021). Whole-body control of an autonomous mobile manipulator using series elastic actuators. IEEE/ASME Transactions on Mechatronics, 26(2), 657–667. https://doi.org/10.1109/TMECH.2021.3060033
  • Lu, B., Fang, Y. C., & Sun, N. (2017). Sliding mode control for underactuated overhead cranes suffering from both matched and unmatched disturbances. Mechatronics, 47, 116–125. https://doi.org/10.1016/j.mechatronics.2017.09.006
  • Ma, H., Zhou, Q., Li, H. Y., & Lu, R. Q. (2022). Adaptive prescribed performance control of a flexible-joint robotic manipulator with dynamic uncertainties. IEEE Transactions on Cybernetics, 52(12), 12905–12915. https://doi.org/10.1109/TCYB.2021.3091531
  • Meng, Q. X., Lai, X. Z., Yan, Z., Su, C. -Y., & Wu, M. (2022). Motion planning and adaptive neural tracking control of an uncertain two-link rigid-flexible manipulator with vibration amplitude constraint. IEEE Transactions on Neural Networks and Learning Systems, 33(8), 3814–3828. https://doi.org/10.1109/TNNLS.2021.3054611
  • Meng, Q. X., Lai, X. Z., Yan, Z., Wang, Y. W., & Wu, M. (2021). Position control with zero residual vibration for two degrees-of-freedom flexible systems based on motion trajectory optimization. Information Sciences, 575, 698–713. https://doi.org/10.1016/j.ins.2021.07.086
  • Ming, X., Rong, C., & He, L. (2021). Design and modeling of a bio-inspired flexible joint actuator. Actuators, 10(5), 95. https://doi.org/10.3390/act10050095
  • Rsetam, K., Cao, Z. W., & Z. H. Man (2020). Cascaded-extended-state-observer-based sliding-mode control for underactuated flexible joint robot. IEEE Transactions on Industrial Electronics, 67(12), 10822–10832. https://doi.org/10.1109/TIE.41
  • Rsetam, K., Cao, Z. W., & Man, Z. H. (2022). Design of robust terminal sliding mode control for underactuated flexible joint robot. IEEE Transactions Systems, Man, and Cybernetics: Systems, 52(7), 4272–4285. https://doi.org/10.1109/TSMC.2021.3096835
  • Ruderman, M., & Iwasaki, M. (2016). Sensorless torsion control of elastic-joint robots with hysteresis and friction. IEEE Transactions on Industrial Electronics, 63(3), 1889–1899. https://doi.org/10.1109/TIE.2015.2453415
  • She, J. H., Zhang, A. C., Lai, X. Z., & Wu, M. (2012). Global stabilization of 2-dof underactuated mechanical systems-an equivalent-input-disturbance approach. Nonlinear Dynamics, 69(1–2), 495–509. https://doi.org/10.1007/s11071-011-0280-3
  • Shi, H. T., Wang, M., & Wang, C. (2022). Pattern-based autonomous smooth switching control for constrained flexible joint manipulator. Neurocomputing, 492, 162–173. https://doi.org/10.1016/j.neucom.2022.04.031
  • Shoji, T., Katsumata, S., Nakaura, S., & Sampei, M. (2013). Throwing motion control of the springed pendubot. IEEE Transactions on Control Systems Technology, 21(3), 950–957. https://doi.org/10.1109/TCST.2012.2192121
  • Spyrakos-Papastavridis, E., & Dai, J. S. (2021). Minimally model-based trajectory tracking and variable impedance control of flexible-joint robots. IEEE Transactions on Industrial Electronics, 68(7), 6031–6041. https://doi.org/10.1109/TIE.2020.2994886
  • Subudhi, B., & Morris, A. S. (2003). Singular perturbation approach to trajectory tracking of flexible robot with joint elasticity. International Journal of Systems Science, 34(3), 167–179. https://doi.org/10.1080/0020772031000135450
  • Sun, N., Fang, Y. C., Chen, H., & He, B. (2015). Adaptive nonlinear crane control with load hoisting/lowering and unknown parameters: Design and experiments. IEEE/ASME Transactions on Mechatronics, 20(5), 2107–2119. https://doi.org/10.1109/TMECH.2014.2364308
  • Sun, W., Diao, S. Z., Su, S. F., & Wu, Y. Q. (2021). Adaptive fuzzy tracking for flexible-joint robots with random noises via command filter control. Information Sciences, 575, 116–132. https://doi.org/10.1016/j.ins.2021.06.025
  • Wang, T. Z., Lu, M. J., Zhu, X. Y., & Patton, R. (2022). Aggressive maneuver oriented robust actuator fault estimation of a 3-dof helicopter prototype considering measurement noises. IEEE/ASME Transactions on Mechatronics, 27(3), 1672–1682. https://doi.org/10.1109/TMECH.2021.3087193
  • Wu, J. D., Wang, Y. W., Ye, W. J., & Su, C. Y. (2019). Control strategy based on fourier transformation and intelligent optimization for planar pendubot. Information Sciences, 491, 279–288. https://doi.org/10.1016/j.ins.2019.03.051
  • Xin, X., & Liu, Y. (2013). A set-point control for a two-link underactuated robot with a flexible elbow joint. Journal of Dynamic Systems, Measurement and Control, 135(5), Article 051016. https://doi.org/10.1115/1.4024427
  • Yan, Z., Lai, X. Z., Meng, Q. X., & Wu, M. (2021). A novel robust control method for motion control of uncertain single-link flexible-joint manipulator. IEEE Transactions Systems, Man, and Cybernetics: Systems, 51(3), 1671–1678. https://doi.org/10.1109/TSMC.6221021
  • Yan, Z., Lai, X. Z., Meng, Q. X., Zhang, P., & Wu, M. (2021). Tracking control of single-link flexible-joint manipulator with unmodeled dynamics and dead zone. International Journal of Robust and Nonlinear Control, 31(4), 1270–1287. https://doi.org/10.1002/rnc.v31.4
  • Yang, X. B., & Zheng, X. L. (2020). Adaptive nn backstepping control design for a 3-dof helicopter: Theory and experiments. IEEE Transactions on Industrial Electronics, 67(5), 3967–3979. https://doi.org/10.1109/TIE.41
  • Zhao, G., & Hua, C. (2017). Continuous-discrete-time adaptive observers for nonlinear systems with sampled output measurements. International Journal of Systems Science, 48(12), 2599–2609. https://doi.org/10.1080/00207721.2017.1324924

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.