43
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Event-based adaptive active disturbance rejection control for nonlinear large-scale systems with input delay

, ORCID Icon, ORCID Icon &
Received 30 Aug 2023, Accepted 09 Mar 2024, Published online: 26 Mar 2024

References

  • Al-Jodah, A., Shirinzadeh, B., Ghafarian, M., Das, T., Tian, Y., & Zhang, D. (2020). A fuzzy disturbance observer based control approach for a novel 1-DOF micropositioning mechanism. Mechatronics, 65, Article 102317.
  • Bi, W., Wang, T., & Yu, X. (2022). Fuzzy adaptive decentralized control for nonstrict-feedback large-scale switched fractional-order nonlinear systems. IEEE Transactions on Cybernetics, 52(9), 8887–8896. https://doi.org/10.1109/TCYB.2021.3061136
  • Cai, J., Wen, C., Xing, L., & Yan, Q. (2023). Decentralized backstepping control for interconnected systems with non-triangular structural uncertainties. IEEE Transactions on Automatic Control, 68(3), 1692–1699. https://doi.org/10.1109/TAC.2022.3152083
  • Cao, L., Li, H., Wang, N., & Zhou, Q. (2019). Observer-based event-triggered adaptive decentralized fuzzy control for nonlinear large-scale systems. IEEE Transactions on Fuzzy Systems, 27(6), 1201–1214. https://doi.org/10.1109/TFUZZ.91
  • Cao, L., Yao, D., Li, H., Meng, W., & Lu, R. (2023). Fuzzy-based dynamic event triggering formation control for nonstrict-feedback nonlinear MASs. Fuzzy Sets and Systems, 452, 1–22. https://doi.org/10.1016/j.fss.2022.03.005
  • Chen, B., Liu, X., & Lin, C. (2018). Observer and adaptive fuzzy control design for nonlinear strict-feedback systems with unknown virtual control coefficients. IEEE Transactions on Fuzzy Systems, 26(3), 1732–1743. https://doi.org/10.1109/TFUZZ.91
  • Chen, L., Liang, H., Pan, Y., & Li, T. (2023). Human-in-the-loop consensus tracking control for UAV systems via an improved prescribed performance approach. IEEE Transactions on Aerospace and Electronic Systems, 59(6), 8380–8391. https://doi.org/10.1109/TAES.2023.3304283
  • Chen, Z. (2023). Synchronization of frequency-modulated multiagent systems. IEEE Transactions on Automatic Control, 68(6), 3425–3439. https://doi.org/10.1109/TAC.2022.3197125
  • Du, P., Pan, Y., Li, H., & Lam, H. (2021). Nonsingular finite-time event-triggered fuzzy control for large-scale nonlinear systems. IEEE Transactions on Fuzzy Systems, 29(8), 2088–2099. https://doi.org/10.1109/TFUZZ.2020.2992632
  • Gao, H., Li, Z., Yu, X., & Qiu, J. (2022). Hierarchical multi-objective heuristic for PCB assembly optimization in a beam-head surface mounter. IEEE Transactions on Cybernetics, 52(7), 6911–6924. https://doi.org/10.1109/TCYB.2020.3040788
  • Guo, B., & Zhao, Z. (2013). Weak convergence of nonlinear high-gain tracking differentiator. IEEE Transactions on Automatic Control, 58(4), 1074–1080. https://doi.org/10.1109/TAC.2012.2218153
  • Han, J. (2009). From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906. https://doi.org/10.1109/TIE.2008.2011621
  • He, Y., Zhang, C., Zeng, H., & Wu, M. (2023). Additional functions of variable-augmented-based free-weighting matrices and application to systems with time-varying delay. International Journal of Systems Science, 54(5), 991–1003. https://doi.org/10.1080/00207721.2022.2157198
  • Hou, M., Shi, W., Fang, L., & Duan, G. (2022). Adaptive dynamic surface control of high-order strict feedback nonlinear systems with parameter estimations. Science China Information Sciences, 66(5), Article 159203.
  • Hou, M., Shi, W., Fang, L., & Duan, G. (2023). Adaptive dynamic surface control of high-order strict feedback nonlinear systems with parameter estimations. Science China Information Sciences, 66(5), Article 159203. https://doi.org/10.1007/s11432-021-3488-6
  • Li, H., Luo, J., Ma, H., & Zhou, Q. (2023). Observer-based event-triggered consensus control for locally Lipschitz nonlinear MASs via distributed iterative learning control. IEEE Transactions on Cognitive and Developmental Systems. https://doi.org/10.1109/TCDS.2023.3y274794
  • Li, M., Wu, Z., Deng, F., & Guo, B. (2022). Active disturbance rejection control to consensus of second-order stochastic multi-agent systems. IEEE Transactions on Control of Network Systems, 10(2), 993–1004. https://doi.org/10.1109/TCNS.2022.3213710
  • Li, P., Lam, J., & Lu, R. (2023). Robust switched velocity-dependent path-following control for autonomou ground vehicles. IEEE Transactions on Intelligent Transportation Systems, 24(5), 4814–4826.
  • Li, W., Niu, Y., & Cao, Z. (2022). Event-triggered sliding mode control for multi-agent systems subject to channel fading. International Journal of Systems Science, 53(6), 1233–1244. https://doi.org/10.1080/00207721.2021.1995527
  • Li, Y., Li, Y., & Tong, S. (2023). Event-based finite-time control for nonlinear multiagent systems with asymptotic tracking. IEEE Transactions on Automatic Control, 68(6), 3790–3797. https://doi.org/10.1109/TAC.2022.3197562
  • Li, Y., Min, X., & Tong, S. (2020). Adaptive fuzzy inverse optimal control for uncertain strict-feedback nonlinear systems. IEEE Transactions on Fuzzy Systems, 28(10), 2363–2374. https://doi.org/10.1109/TFUZZ.91
  • Li, Y., Min, X., & Tong, S. (2021). Observer-based fuzzy adaptive inverse optimal output feedback control for uncertain nonlinear systems. IEEE Transactions on Fuzzy Systems, 29(6), 1484–1495. https://doi.org/10.1109/TFUZZ.2020.2979389
  • Li, Y., Qu, F., & Tong, S. (2021). Observer-based fuzzy adaptive finite-time containment control of nonlinear multiagent systems with input delay. IEEE Transactions on Cybernetics, 51(1), 126–137. https://doi.org/10.1109/TCYB.6221036
  • Li, Y., & Tong, S. (2023). Bumpless transfer distributed adaptive backstepping control of nonlinear multi-agent systems with circular filtering under DoS attacks. Automatica, 157, Article 111250.
  • Li, Y., & Yu, K. (2022). Adaptive fuzzy decentralized sampled-data control for large-scale nonlinear systems. IEEE Transactions on Fuzzy Systems, 30(6), 1809–1822. https://doi.org/10.1109/TFUZZ.2021.3069321
  • Li, Z., Zhao, Y., Yan, H., Wang, M., & Zeng, L. (2023). Prescribed-time zero-error active disturbance rejection control for uncertain wheeled mobile robots subject to skidding and slipping. International Journal of Systems Science, 54(6), 1313–1329. https://doi.org/10.1080/00207721.2023.2177898
  • Liu, Y., Chi, R., Li, H., Wang, L., & Lin, N. (2023). HiTL-based adaptive fuzzy tracking control of MASs: A distributed fixed-time strategy. Science China Technological Sciences, 66(10), 2907–2916. https://doi.org/10.1007/s11431-022-2319-6
  • Liu, Y., Yao, D., Wang, L., & Lu, S. (2023). Distributed adaptive fixed-time robust platoon control for fully heterogeneous vehicles. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 3(1), 264–274. https://doi.org/10.1109/TSMC.2022.3179444
  • Liu, Y., Zhu, Q., & Wang, L. (2022). Event-based adaptive fuzzy control design for nonstrict-feedback nonlinear time-delay systems with state constraints. ISA Transactions, 125, 134–145. https://doi.org/10.1016/j.isatra.2021.07.001
  • Liu, Z., Gao, H., Yu, X., Lin, W., Qiu, J., Rodríguez-Andina, J. J., & Qu, D. (2024). B-spline wavelet neural network-based adaptive control for linear motor-driven systems via a novel gradient descent algorithm. IEEE Transactions on Industrial Electronics, 71(2), 1896–1905. https://doi.org/10.1109/TIE.2023.3260318
  • Ma, H., Ren, H., Zhou, Q., Li, H., & Wang, Z. (2023). Observer-based neural control of n-link flexible-joint robots. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2022.3203074
  • Ma, T., Zhang, Z., & Li, R. (2024). Discontinuous adaptive impulsive control of uncertain system with extension in stochastic perturbation and actuator saturation. IEEE Transactions on Cybernetics, 54(1), 353–363. https://doi.org/10.1109/TCYB.2023.3267962
  • Ma, W., Luo, X., & Zhu, Q. (2020). Practical exponential stability of stochastic age-dependent capital system with Lévy noise. Systems & Control Letters, 144, Article 104759. https://doi.org/10.1016/j.sysconle.2020.104759
  • Ma, Z., & Ma, Z. (2020). Adaptive fuzzy backstepping dynamic surface control of strict-feedback fractional-order uncertain nonlinear systems. IEEE Transactions on Fuzzy Systems, 28(1), 122–133. https://doi.org/10.1109/TFUZZ.91
  • Muñoz-Vázquez, A. J., Parra-Vega, V., Sánchez-Orta, A., Romero-Galván, G., & Lara-Alabazares, D. (2020). Robust control of wind turbines based on fractional nonlinear disturbance observer. Asian Journal of Control, 22(5), 1801–1810. https://doi.org/10.1002/asjc.v22.5
  • Niu, B., & Li, L. (2017). Adaptive backstepping-based neural tracking control for MIMO nonlinear switched systems subject to input delays. IEEE Transactions on Neural Networks and Learning Systems, 29(6), 2638–2644. https://doi.org/10.1109/TNNLS.2017.2690465
  • Niu, B., Yan, B., Zhao, X., Zhang, B., Zhao, T., & Liu, X. (2023). Event-triggered adaptive command filtered bipartite finite-time tracking control of nonlinear coopetition MASs with time-varying disturbances. IEEE Transactions on Automation Science and Engineering. https://doi.org/10.1109/TASE.2023.3297253
  • Niu, B., Zhang, Y., Zhao, X., Wang, H., & Sun, W. (2023). Adaptive predefined-time bipartite consensus tracking control of constrained nonlinear MASs. IEEE Transactions on Cybernetics, 53(9), 6017–6026. https://doi.org/10.1109/TCYB.2022.3231900
  • Pan, Y., Ji, W., Lam, H. K., & Cao, L. (2023). An improved predefined-time adaptive neural control approach for nonlinear multiagent systems. IEEE Transactions on Automation Science and Engineering. https://doi.org/10.1109/TASE.2023.3324397
  • Pei, H. (2022). Collaborative consensus tracking of heterogeneous group systems with switching topologies and input time delay. International Journal of Systems Science, 95(2), 319–329.
  • Qian, W., Xing, W., & Fei, S. (2021). H∞ state estimation for neural networks with general activation function and mixed time-varying delays. IEEE Transactions on Neural Networks and Learning Systems, 32(9), 3909–3918. https://doi.org/10.1109/TNNLS.2020.3016120
  • Ren, H., & Cheng, Z. (2023). Deception attacks on event-triggered distributed consensus estimation for nonlinear systems. Automcatic, 154, Article 111100.
  • Ren, H., Ma, H., Li, H., & Wang, Z. (2023). Adaptive fixed-time control of nonlinear MASs with actuator faults. IEEE/CAA Journal of Automatica Sinica, 10(5), 1252–1262. https://doi.org/10.1109/JAS.2023.123558
  • Sariyildiz, E., Oboe, R., & Ohnishi, K. (2020). Disturbance observer-based robust control and its applications: 35th anniversary overview. IEEE Transactions on Industrial Electronics, 67(3), 2042–2053. https://doi.org/10.1109/TIE.41
  • Shangguan, X., He, Y., Zhang, C., Yao, W., Zhao, Y., Jiang, L., & Wu, M. (2023). Resilient load frequency control of power systems to compensate random time delays and time-delay attacks. IEEE Transactions on Industrial Electronics, 70(5), 5115–5128. https://doi.org/10.1109/TIE.2022.3186335
  • Shao, X., Liu, J., & Wang, H. (2018). Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator. Mechanical Systems and Signal Processing, 104, 631–647.
  • Shi, P., Sun, W., Yang, X., Rudas, I. J., & Gao, H. (2022). Master-slave synchronous control of dual-drive gantry stage with cogging force compensation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(1), 216–225. https://doi.org/10.1109/TSMC.2022.3176952
  • Song, J., Huang, L., Karimi, H., Niu, Y., & Zhou, J. (2020). ADP-based security decentralized sliding mode control for partially unknown large-scale systems under injection attacks. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(12), 5290–5301. https://doi.org/10.1109/TCSI.8919
  • Su, H., Cheng, B., & Li, Z. (2023). Cooperative output regulation of heterogeneous systems over directed graphs: A dynamic adaptive event-triggered strategy. Journal of Systems Science and Complexity, 36(3), 909–921. https://doi.org/10.1007/s11424-023-1501-9
  • Sui, S., Chen, P., & Tong, S. (2023). A novel full errors fixed-time control for constraint nonlinear systems. IEEE Transactions on Automatic Control, 68(4), 2568–2575. https://doi.org/10.1109/TAC.2022.3200962
  • Sui, S., & Tong, S. (2023). Finite-time fuzzy adaptive PPC for nonstrict-feedback nonlinear MIMO systems. IEEE Transactions on Cybernetics, 53(2), 732–742. https://doi.org/10.1109/TCYB.2022.3163739
  • Tong, S., Sun, K., & Sui, S. (2018). Observer-based adaptive fuzzy decentralized optimal control design for strict-feedback nonlinear large-scale systems. IEEE Transactions on Fuzzy Systems, 26(2), 569–584. https://doi.org/10.1109/TFUZZ.91
  • Wang, C., Ji, X., Zhang, Z., Zhao, B., Quan, L., & A. R. Plummer (2022). Tracking differentiator based back-stepping control for valve-controlled hydraulic actuator system. ISA Transactions, 119, 208–220. https://doi.org/10.1016/j.isatra.2021.02.028
  • Wang, H., Liu, P. X., & Bao, J. (2020). Adaptive neural output-feedback decentralized control for large-scale nonlinear systems with stochastic disturbances. IEEE Transactions on Neural Networks and Learning Systems, 31(3), 972–983. https://doi.org/10.1109/TNNLS.5962385
  • Wang, M., Liang, H., Pan, Y., & Xie, X. (2023). A new privacy preservation mechanism and a gain iterative disturbance observer for multiagent systems. IEEE Transactions on Network Science and Engineering. https://doi.org/10.1109/TNSE.2023.3299614
  • Wang, M., Wang, Z., Chen, Y., & Sheng, W. (2020). Event-based adaptive neural tracking control for discrete-time stochastic nonlinear systems: A triggering threshold compensation strategy. IEEE Transactions on Neural Networks and Learning Systems, 31(6), 1968–1981. https://doi.org/10.1109/TNNLS.5962385
  • Wang, M., Wang, Z., Dong, H., & Han, Q. (2021). A novel framework for backstepping-based control of discrete-time strict-feedback nonlinear systems with multiplicative noises. IEEE Transactions on Automatic Control, 66(4), 1484–1496. https://doi.org/10.1109/TAC.2020.2995576
  • Wang, X., Guang, W., Huang, T., & Jurgen, K. (2023). Optimized adaptive finite-time consensus control for stochastic nonlinear multiagent systems with nonaffine nonlinear faults. IEEE Transactions on Automation Science and Engineering. https://doi.org/10.1109/TASE.2023.3306101
  • Wang, X., Pang, N., Xu, Y., Huang, T., & Jurgen, K. (2023). On state constrained containment control for nonlinear multiagent systems using event-triggered input. IEEE Transactions On Systems Man Cybernetic: Systems. https://doi.org/10.1109/TSMC.2023.3345365
  • Xie, M., Shakoor, A., Wu, Z., & Jiang, B. (2020). Optical manipulation of biological cells with a robot-tweezers system: A stochastic control approach. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(12), 3232–3236.
  • Yang, S., Pan, Y., Cao, L., & Chen, L. (2024). Predefined-time fault-tolerant consensus tracking control for multi-UAV systems with prescribed performance and attitude constraints. IEEE Transactions on Aerospace and Electronic Systems. https://doi.org/10.1109/TAES.2024.3371406
  • Yao, D., Li, H., & Shi, Y. (2024). Event-based average consensus of disturbed MASs via fully distributed sliding mode control. IEEE Transactions on Automcatic Control, 69(3), 2015–2022. https://doi.org/10.1109/TAC.2023.3317505
  • Yu, P., Deng, F., Liu, X., & Sun, Y. (2023). Event-triggered polynomial input-to-state stability in mean square for pantograph stochastic systems. International Journal of Systems Science, 54(11), 2301–2315. https://doi.org/10.1080/00207721.2023.2230189
  • Zhang, H., Zhao, X., Wang, H., Niu, B., & Xu, N. (2023). Adaptive tracking control for output-constrained switched MIMO pure-feedback nonlinear systems with input saturation. Journal of Systems Science and Complexity, 36(3), 960–984. https://doi.org/10.1007/s11424-023-1455-y
  • Zhao, X., & Deng, F. (2015). Divided state feedback control of stochastic systems. IEEE Transactions on Automatic Control, 60(7), 1870–1885. https://doi.org/10.1109/TAC.2015.2396647
  • Zhao, Z., He, X., & Ahn, C. (2019). Boundary disturbance observer-based control of a vibrating single-link flexible manipulator. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(4), 2382–2390. https://doi.org/10.1109/TSMC.6221021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.