75
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Adaptive prescribed-time sliding mode control of nonlinear systems with unknown dynamics

&
Received 22 Feb 2024, Accepted 27 Apr 2024, Published online: 14 May 2024

References

  • Cruz-Ancona, C. D., Fridman, L., Obeid, H., Laghrouche, S., & Pérez-Pinacho, C. A. (2023). A uniform reaching phase strategy in adaptive sliding mode control. Automatica, 150, 110854. https://doi.org/10.1016/j.automatica.2023.110854
  • Ding, S., Mei, K., & Yu, X. (2022). Adaptive second-order sliding mode control: A lyapunov approach. IEEE Transactions on Automatic Control, 67(10), 5392–5399. https://doi.org/10.1109/TAC.2021.3115447
  • Ebrahimi, N., Ozgoli, S., & Ramezani, A. (2021). Model-free high-order terminal sliding mode controller for lipschitz nonlinear systems. implemented on exoped exoskeleton robot. International Journal of Systems Science, 52(5), 1061–1073. https://doi.org/10.1080/00207721.2020.1853848
  • Edwards, C., & Shtessel, Y. B. (2016). Adaptive continuous higher order sliding mode control. Automatica, 65, 183–190. https://doi.org/10.1016/j.automatica.2015.11.038
  • Edwards, C., & Spurgeon, S. K. (1998). Sliding mode control: Theory and applications. Taylor & Francis.
  • Feng, Y., Han, F., & Yu, X. (2014). Chattering free full-order sliding-mode control. Automatica, 50(4), 1310–1314. https://doi.org/10.1016/j.automatica.2014.01.004
  • Feng, Y., Zhou, M., Han, Q.-L., Han, F., Cao, Z., & Ding, S. (2020). Integral type sliding-mode control for a class of mechatronic systems with gain adaptation. IEEE Transactions on Industrial Informatics, 16(8), 5357–5368. https://doi.org/10.1109/TII.2019.2954550
  • Guo, G., Yang, D., & Zhang, R. (2023a). Distributed trajectory optimization and platooning of vehicles to guarantee smooth traffic flow. IEEE Transactions on Intelligent Vehicles, 8(1), 684–695. https://doi.org/10.1109/TIV.2022.3179293
  • Guo, G., Zhang, R., Zhou Z.-D. (2023b). A local-minimization-free zero-gradient-sum algorithm for distributed optimization. Automatica, 157, 111247. https://doi.org/10.1016/j.automatica.2023.111247
  • Hamoudia, A., Djeghaliaand, N., & Bettayeb, M. (2022). High-order sliding mode-based synchronisation of fractional-order chaotic systems subject to output delay and unknown disturbance. International Journal of Systems Science, 53(14), 2876–2900. https://doi.org/10.1080/00207721.2022.2063965
  • Lee, H., & Utkin, V. I. (2007). Chattering suppression methods in sliding mode control systems. Annual Reviews in Control, 31(2), 179–188. https://doi.org/10.1016/j.arcontrol.2007.08.001
  • Levant, A. (2005). Quasi-continuous high-order sliding-mode controllers. IEEE Transactions on Automatic Control, 50(11), 1812–1816. https://doi.org/10.1109/TAC.2005.858646
  • Lu, Z., & Guo, G. (2023). Control and communication scheduling co-design for networked control systems: A survey. International Journal of Systems Science, 54(1), 189–203. https://doi.org/10.1080/00207721.2022.2097332
  • Mahalle, M. A., Ramezani, A., & Moarefianpour, A. (2024). Adaptive terminal sliding mode active fault-tolerant control for a class of uncertain nonlinear systems with application of aircraft wing model with actuator faults. International Journal of Systems Science, 55(6), 1259–1269. https://doi.org/10.1080/00207721.2024.2304124
  • Malge, S. V., Ghogare, M. G., Patil, S. L., Deshpande, A. S., Pandey, S. K., (2023). Chatter-free non-singular fast terminal sliding mode control of interleaved boost converter. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(1), 186–190. https://doi.org/10.1109/TCSII.2022.3201959
  • Pandey, S. K., Patil, S. L., Chaskar, U. M., Phadke, S. B.  (2019). State and disturbance observer-based integral sliding mode controlled boost DC-DC converters. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(9), 1567–1571. https://doi.org/10.1109/TCSII.2018.2888570
  • Roy, S., Baldi, S., & Fridman, L. M. (2020). On adaptive sliding mode control without a priori bounded uncertainty. Automatica, 111, 108650. https://doi.org/10.1016/j.automatica.2019.108650
  • Shtessel, Y. B., Moreno, J. A., & Fridman, L. M. (2017). Twisting sliding mode control with adaptation: Lyapunov design, methodology and application. Automatica, 75, 229–235. https://doi.org/10.1016/j.automatica.2016.09.004
  • Song, J., Zuo, Z., & Basin, M. (2023). New class K∞ function-based adaptive sliding mode control. IEEE Transactions on Automatic Control, 68(12), 7840–7847. https://doi.org/10.1109/TAC.2023.3247465
  • Tran, D. T., Ba, D. X., & Ahn, K. K. (2020). Adaptive backstepping sliding mode control for equilibrium position tracking of an electrohydraulic elastic manipulator. IEEE Transactions on Industrial Electronics, 67(5), 3860–3869. https://doi.org/10.1109/TIE.2019.2918475
  • Utkin, V. (1977). Variable structure systems with sliding modes. IEEE Transactions on Automatic Control, 22(2), 212–222. https://doi.org/10.1109/TAC.1977.1101446
  • Utkin, V. (2016). Discussion aspects of high-order sliding mode control. IEEE Transactions on Automatic Control, 61(3), 829–833. https://doi.org/10.1109/TAC.2015.2450571
  • Xie, S., & Chen, Q. (2022). Adaptive nonsingular predefined-time control for attitude stabilization of rigid spacecrafts. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(1), 189–193. https://doi.org/10.1109/TCSII.2021.3078708
  • Xua, R., Liu, Z., & Liu, Y. (2021). State-estimation-based adaptive sliding mode control for a class of uncertain time-delay systems: a new design. International Journal of Systems Science, 53(2), 375–387.  https://doi.org/10.1080/00207721.2021.1958024
  • Yang, Y., Hua, C., & Li, J. (2022). A novel interaction controller design for robotic manipulators with arbitrary convergence time. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(4), 2151–2155. https://doi.org/10.1109/TCSII.2021.3128958
  • Zhao, J., & Li, Y. (2022). Some refinements of young type inequalities. Journal of Mathematical Inequalities, 16(3), 1169–1178. https://doi.org/10.7153/jmi-2022-16-78
  • Zhu, K., Wang, Z., Chen, Y., & Wei, G. (2023a). Neural-network-based set-membership fault estimation for 2-D systems under encoding–decoding mechanism. IEEE Transactions on Neural Networks and Learning Systems, 34(2), 786–798. https://doi.org/10.1109/TNNLS.2021.3102127
  • Zhu, K., Wang, Z., Wei, G., & Liu, X. (2023b). Adaptive set-membership state estimation for nonlinear systems under bit rate allocation mechanism: A neural-network-based approach. IEEE Transactions on Neural Networks and Learning Systems, 34(11), 8337–8348. https://doi.org/10.1109/TNNLS.2022.3149540
  • Zuo, L., Wang, P., Yan, M., & Zhu, X. (2022). Platoon tracking control with road-friction based spacing policy for nonlinear vehicles. IEEE Transactions on Intelligent Transportation Systems, 23(11), 20810–20819. doi:10.1109/TITS.2022.3189079

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.