18
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Achieving safe minimum circle circumnavigation around multiple targets: a dynamic compensation approach

, ORCID Icon &
Received 07 Jun 2023, Accepted 29 May 2024, Published online: 18 Jun 2024

References

  • Cao, Y. (2014). UAV circumnavigating an unknown target using range measurement and estimated range rate. In 2014 American Control Conference (pp. 4581–4586). IEEE. https://doi.org/10.1109/ACC.2014.6858806
  • Cao, Y. (2015). UAV circumnavigating an unknown target under a GPS-denied environment with range-only measurements. Automatica, 55, 150–158. https://doi.org/10.1016/j.automatica.2015.03.007
  • Cao, S., Li, R., Shi, Y., & Song, Y. (2020). A low-cost estimator for target localization and circumnavigation using bearing measurements. Journal of the Franklin Institute, 357(14), 9654–9672. https://doi.org/10.1016/j.jfranklin.2020.07.031
  • Cao, S., Li, R., Shi, Y., & Song, Y. (2021). Safe convex-circumnavigation of one agent around multiple targets using bearing-only measurements. Automatica, 134, Article 109934. https://doi.org/10.1016/j.automatica.2021.109934
  • Chen, K., Qi, G., Li, Y., & Sheng, A. (2023). Target localization and multicircular circumnavigation with bearing-only measurements. International Journal of Adaptive Control and Signal Processing, 37(1), 168–182. https://doi.org/10.1002/acs.3517
  • Chen, Y., Zhang, Y., Liu, C., & Wang, Q. (2019). Formation circumnavigation for unmanned aerial vehicles using relative measurements with an uncertain dynamic target. Nonlinear Dynamics, 97(4), 2305–2321. https://doi.org/10.1007/s11071-019-05126-y
  • Chun, S., & Tian, Y. (2020). Multi-targets localization and elliptical circumnavigation by multi-agents using bearing-only measurements in two-dimensional space. International Journal of Robust and Nonlinear Control, 30(8), 3250–3268. https://doi.org/10.1002/rnc.4932
  • Deghat, M., Shames, I., Anderson, B. D. O., & Yu, C. (2010). Target localization and circumnavigation using bearing measurements in 2D. In 49th IEEE Conference on Decision and Control (CDC) (pp. 334–339). IEEE. https://doi.org/10.1109/CDC.2010.5717795
  • Deghat, M., Xia, L., Anderson, B. D. O., & Hong, Y. (2015). Multi-target localization and circumnavigation by a single agent using bearing measurements. International Journal of Robust and Nonlinear Control, 25(14), 2362–2374. https://doi.org/10.1002/rnc.3208
  • Dong, F., You, K., & Song, S. (2020). Target encirclement with any smooth pattern using range-based measurements. Automatica, 116, Article 108932. https://doi.org/10.1016/j.automatica.2020.108932
  • Dou, L., Song, C., Wang, X., Liu, L., & Feng, G. (2020). Target localization and enclosing control for networked mobile agents with bearing measurements. Automatica, 118, Article 109022. https://doi.org/10.1016/j.automatica.2020.109022
  • Franchi, A., Stegagno, P., & Oriolo, G. (2016). Decentralized multi-robot encirclement of a 3D target with guaranteed collision avoidance. Autonomous Robots, 40(2), 245–265. https://doi.org/10.1007/s10514-015-9450-3
  • Hiriart-Urruty, J. B., & Lemaréchal, C. (1996). Convex analysis and minimization algorithms I: Fundamentals. Springer Science & Business Media.
  • Kou, L., Chen, Z., & Xiang, J. (2021). Cooperative fencing control of multiple vehicles for a moving target with an unknown velocity. IEEE Transactions on Automatic Control, 67(2), 1008–1015. https://doi.org/10.1109/TAC.2021.3075320
  • Li, S., Shao, X., Zhang, W., & Zhang, Q. (2024). Distributed multicircular circumnavigation control for UAVs with desired angular spacing. Defence Technology, 31, 429–446. https://doi.org/10.1016/j.dt.2023.02.007
  • Li, R., Shi, Y., & Song, Y. (2018). Localization and circumnavigation of multiple agents along an unknown target based on bearing-only measurement: A three dimensional solution. Automatica, 94, 18–25. https://doi.org/10.1016/j.automatica.2018.04.005
  • Li, R., Shi, Y., Wu, X., & Song, Y. (2019). Safe-circumnavigation of one single agent around a group of targets with only bearing information. Journal of the Franklin Institute, 356(18), 11546–11560. https://doi.org/10.1016/j.jfranklin.2019.03.040
  • Liu, F., Yuan, S., Meng, W., Su, R., & Xie, L. (2023). Non-cooperative stochastic target encirclement by anti-synchronization control via range-only measurement. In 2023 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5480–5485). IEEE. https://doi.org/10.1109/ICRA48891.2023.10161054
  • Liu, F., Yuan, S., Meng, W., Su, R., & Xie, L. (2024). Multiple noncooperative targets encirclement by relative distance-based positioning and neural antisynchronization control. IEEE Transactions on Industrial Electronics, 71(2), 1675–1685. https://doi.org/10.1109/TIE.2023.3257364
  • Ma, Z., Wang, J., & Li, Y. (2021). Finite-time localization and circumnavigation by elliptical trajectory with bearing-only measurements. In 2021 International Conference on Cyber-Physical Social Intelligence (ICCSI) (pp. 1–6). IEEE. https://doi.org/10.1109/ICCSI53130.2021.9736223
  • Matveev, A. S., & A. A. Semakova (2017). Localization and three-dimensional circumnavigation of many mobile targets based on distance measurements. IFAC-PapersOnLine, 50(1), 8832–8837. https://doi.org/10.1016/j.ifacol.2017.08.1538
  • Matveev, A. S., & Semakova, A. A. (2018). Range-only-based three-dimensional circumnavigation of multiple moving targets by a nonholonomic mobile robot. IEEE Transactions on Automatic Control, 63(7), 2032–2045. https://doi.org/10.1109/TAC.2017.2758843
  • Matveev, A. S., Semakova, A. A., & Savkin, A. V. (2016). Range-only based circumnavigation of a group of moving targets by a non-holonomic mobile robot. Automatica, 65, 76–89. https://doi.org/10.1016/j.automatica.2015.11.032
  • Miao, Z., Wang, Y., & Fierro, R. (2017). Cooperative circumnavigation of a moving target with multiple nonholonomic robots using backstepping design. Systems and Control Letters, 103, 58–65. https://doi.org/10.1016/j.sysconle.2017.03.004
  • Sen, A., Sahoo, S. R., & Kothari, M. (2021). Circumnavigation on multiple circles around a nonstationary target with desired angular spacing. IEEE Transactions on Cybernetics, 51(1), 222–232. https://doi.org/10.1109/TCYB.2019.2935839
  • Shames, I., Fidan, B., & Anderson, B. D. O. (2011). Close target reconnaissance with guaranteed collision avoidance. International Journal of Robust and Nonlinear Control, 21(16), 1823–1840. https://doi.org/10.1002/rnc.1663
  • Shao, J., & Tian, Y. (2018). Multi-target localisation and circumnavigation by a multi-agent system with bearing measurements in 2D space. International Journal of Systems Science, 49(1), 15–26. https://doi.org/10.1080/00207721.2017.1397803
  • Shao, X., Yue, X., & Zhang, W. (2023). Target encircling control possessing decreased sampling load for quadrotors with experimental verification. Mechatronics, 96, Article 103090. https://doi.org/10.1016/j.mechatronics.2023.103090
  • Shi, Y., Li, R., & Teo, K. L. (2015). Cooperative enclosing control for multiple moving targets by a group of agents. International Journal of Control, 88(1), 80–89. https://doi.org/10.1080/00207179.2014.938447
  • Yang, Z., Zhu, S., Chen, C., Feng, G., & Guan, X. (2020). Entrapping a target in an arbitrarily shaped orbit by a single robot using bearing measurements. Automatica, 113, Article 108805. https://doi.org/10.1016/j.automatica.2020.108805
  • Yue, X., Shao, X., & Zhang, W. (2022). Elliptical encircling of quadrotors for a dynamic target subject to aperiodic signals updating. IEEE Transactions on Intelligent Transportation Systems, 23(9), 14375–14388. https://doi.org/10.1109/TITS.2021.3127722
  • Zhang, F., Shao, X., Xia, Y., & Zhang, W. (2024). Elliptical encirclement control capable of reinforcing performances for UAVs around a dynamic target. Defence Technology, 32, 104–119. https://doi.org/10.1016/j.dt.2023.03.014
  • Zheng, R., Liu, Y., & Sun, D. (2015). Enclosing a target by nonholonomic mobile robots with bearing-only measurements. Automatica, 53, 400–407. https://doi.org/10.1016/j.automatica.2015.01.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.