812
Views
30
CrossRef citations to date
0
Altmetric
Articles

On the effect of adhesive thickness on mode I fracture energy - an experimental and modelling study using a trapezoidal cohesive zone model

ORCID Icon, , , & ORCID Icon
Pages 490-514 | Received 05 Nov 2018, Accepted 23 Mar 2019, Published online: 13 Apr 2019

References

  • Hunston, D.; Kinloch, A.; Wang, S. Micromechanics of Fracture in Structural Adhesive Bonds. J. Adhes. 1989, 28(2–3), 103–114. DOI: 10.1080/00218468908030877.
  • Campos, A. A. M. A.; de Jesus, A. M. P.; Correia, J. A. F. O.; Morais, J. J. L. Fatigue Crack Growth Behavior of Bonded Aluminum Joints. Procedia Engineering. 2016, 160, 270–277. DOI: 10.1016/j.proeng.2016.08.890.
  • Boutar Y, Naïmi S, Mezlini S; da Silva LF; Ali MB. Characterization of Aluminium One-Component Polyurethane Adhesive Joints as a Function of Bond Thickness for the Automotive Industry: Fracture Analysis and Behavior. Eng. Fract. Mech. 2017, 177, 45–60. DOI: 10.1016/j.engfracmech.2017.03.044.
  • Yan, C.; Mai Y-W, Y. L. Effect of Bond Thickness on Fracture Behaviour in Adhesive Joints. J. Adhes. 2001, 75(1), 27–44. DOI: 10.1080/00218460108029592.
  • Whitney, J. M.; Composite materials: testing and design (seventh conference), Philadelphia. 1984.
  • Daghyani, H. R.; Ye, L.; Mai, Y.-W. Mode-L Fracture Behaviour of Adhesive Joints. Part I. Relationship between Fracture Energy and Bond Thickness. J. Adhes. 1995, 53(3–4), 149–162. DOI: 10.1080/00218469508009935.
  • Carlberger, T.; Stigh, U. Influence of Layer Thickness on Cohesive Properties of an Epoxy-Based Adhesive—An Experimental Study. J. Adhes. 2010, 86(8), 816–835. DOI: 10.1080/00218464.2010.498718.
  • Banea, M. D.; Da Silva, L. F. M.; Campilho, R. D. S. G. The Effect of Adhesive Thickness on the Mechanical Behavior of a Structural Polyurethane Adhesive. J. Adhes. 2014, 91(5), 331–346. DOI: 10.1080/00218464.2014.903802.
  • Lopes, R.; Campilho, R.; Da Silva, F.; Faneco, T. M. S. Comparative Evaluation of the Double-Cantilever Beam and Tapered Double-Cantilever Beam Tests for Estimation of the Tensile Fracture Toughness of Adhesive Joints. Int. J. Adhes. Adhes. 2016, 67, 103–111. DOI: 10.1016/j.ijadhadh.2015.12.032.
  • De Moura, M.; Morais, J.; Dourado, N. A New Data Reduction Scheme for Mode I Wood Fracture Characterization Using the Double Cantilever Beam Test. Eng. Fract. Mech. 2008, 75(13), 3852–3865. DOI: 10.1016/j.engfracmech.2008.02.006.
  • Fernández, M. V.; de Moura, M. F. S. F.; Da Silva, L. F. M.; Marques, A. T. Composite Bonded Joints under Mode I Fatigue Loading. Int. J. Adhes. Adhes. 2011, 31(5), 280–285. DOI: 10.1016/j.ijadhadh.2010.10.003.
  • Teixeira, J. M. D.; Campilho, R.; Da Silva, F. J. G. Numerical Assessment of the Double-Cantilever Beam and Tapered Double-Cantilever Beam Tests for the GIC Determination of Adhesive Layers. J. Adhes. 2018, 94(11), 951–973. DOI: 10.1080/00218464.2017.1383905.
  • Constante, C. J.; Campilho, R. D. S. G.; Moura, D. C. Tensile Fracture Characterization of Adhesive Joints by Standard and Optical Techniques. Eng. Fract. Mech. 2015, 136, 292–304. DOI: 10.1016/j.engfracmech.2015.02.010.
  • Valoroso, N.; Sessa, S.; Lepore, M.; Cricrì, G. Identification of mode-I Cohesive Parameters for Bonded Interfaces Based on DCB Test. Eng. Fract. Mech. 2013, 104, 56–79. DOI: 10.1016/j.engfracmech.2013.02.008.
  • Sørensen, B. F.;. Cohesive Law and Notch Sensitivity of Adhesive Joints. Acta Mater. 2002, 50(5), 1053–1061. DOI: 10.1016/S1359-6454(01)00404-9.
  • De Moura, M.; Gonçalves, J.; Magalhães, A. A Straightforward Method to Obtain the Cohesive Laws of Bonded Joints under Mode I Loading. Int. J. Adhes. Adhes. 2012, 39, 54–59. DOI: 10.1016/j.ijadhadh.2012.07.008.
  • Sun, G.; Liu, X.; Zheng, G.; Gong, Z.; Li, Q. On Fracture Characteristics of Adhesive Joints with Dissimilar materials-An Experimental Study Using Digital Image Correlation (DIC) Technique. Compos. Struct. 2018, 201, 1056–1075. DOI: 10.1016/j.compstruct.2018.06.018.
  • Campilho, R. D.; Banea, M. D.; Neto, J.; Da Silva, L. F. M. Modelling Adhesive Joints with Cohesive Zone Models: Effect of the Cohesive Law Shape of the Adhesive Layer. Int. J. Adhes. Adhes. 2013, 44, 48–56. DOI: 10.1016/j.ijadhadh.2013.02.006.
  • De Moura, M.; Campilho, R.; Gonçalves, J. Crack Equivalent Concept Applied to the Fracture Characterization of Bonded Joints under Pure Mode I Loading. Compos. Sci. Technol. 2008, 68(10–11), 2224–2230. DOI: 10.1016/j.compscitech.2008.04.003.
  • Dourado, N. M.; de Moura, M. F.; Morais, J. J.; Silva, M. A. L. Estimate of Resistance-Curve in Wood through the Double Cantilever Beam Test. Holzforschung. 2010, 64(1), 119–126. DOI: 10.1515/hf.2010.010.
  • De Moura, M.; Gonçalves, J.; Chousal, J.; Campilho, R. D. S. G. Cohesive and Continuum Mixed-Mode Damage Models Applied to the Simulation of the Mechanical Behaviour of Bonded Joints. Int. J. Adhes. Adhes. 2008, 28(8), 419–426. DOI: 10.1016/j.ijadhadh.2008.04.004.
  • Dias, G. F.; de Moura, M. F. S. F.; Chousal, J. A. G.; Xavier, J. Cohesive Laws of Composite Bonded Joints under Mode I Loading. Compos. Struct. 2013, 106, 646–652. DOI: 10.1016/j.compstruct.2013.07.027.
  • Sekiguchi, Y.; Katano, M.; Sato, C. Experimental Study of the Mode I Adhesive Fracture Energy in DCB Specimens Bonded with a Polyurethane Adhesive. J. Adhes. 2015, 93(3), 235–255. DOI: 10.1080/00218464.2015.1070101.
  • Škec, L.; Alfano, G.; Jelenić, G. On Gc, Jc and the Characterisation of the mode-I Fracture Resistance in Delamination or Adhesive Debonding. Int. J. Solids Struct. 2018, 144–145, 100–122. DOI: 10.1016/j.ijsolstr.2018.04.020.
  • Škec, L.; Alfano, G.; Jelenić, G. Enhanced Simple Beam Theory for Characterising mode-I Fracture Resistance via a Double Cantilever Beam Test. Compos. B Eng. 2019, 167, 250–262. DOI: 10.1016/j.compositesb.2018.11.099.
  • Williams, J.; Hadavinia, H. Analytical Solutions for Cohesive Zone Models. J. Mech. Phys. Solids. 2002, 50(4), 809–825. DOI: 10.1016/S0022-5096(01)00095-3.
  • Barenblatt, G. I.;. The Formation of Equilibrium Cracks during Brittle Fracture. General Ideas and Hydrotheses: Axially-Symmetric Cracks. J. Appl. Math. Mech.. 1959, 23, 622–636. DOI: 10.1016/0021-8928(59)90157-1.
  • Barenblatt, G. I.;. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Adv. appl. mech. 1962, Elsevier 7, 55–129.
  • Dugdale, D. S.;. Yielding of Steel Sheets Containing Slits. J. Mech. Phys. Solids. 1960, 8(2), 100–104. DOI: 10.1016/0022-5096(60)90013-2.
  • Fernández-Cañadas, L. M.; Iváñez, I.; Sanchez-Saez, S. Influence of the Cohesive Law Shape on the Composite Adhesively-Bonded Patch Repair Behaviour. Compos. B Eng. 2016, 91, 414–421. DOI: 10.1016/j.compositesb.2016.01.056.
  • Han, X.; Crocombe, A. D.; Anwar, S. N. R.; Hu, P. The Strength Prediction of Adhesive Single Lap Joints Exposed to Long Term Loading in a Hostile Environment. Int. J. Adhes. Adhes. 2014, 55, 1–11. DOI: 10.1016/j.ijadhadh.2014.06.013.
  • Bang, H.; Lee, S.-K.; Cho, C.; Cho, J. U. Study on Crack Propagation of Adhesively Bonded DCB for Aluminum Foam Using Energy Release Rate. J. Mech. Sci. Technol. 2015, 29(1), 45–50. DOI: 10.1007/s12206-014-1207-y.
  • Rocha, R. J. B.; Campilho, R. D. S. G. Detailed Investigation of the Analysis Conditions in the Evaluation of Bonded Joints by Cohesive Zone Models. J. Phys. Conf. Ser. 2017, 843, 012002. DOI: 10.1088/1742-6596/843/1/012002.
  • Hu P, Han X, Da Silva LFM; Li WD. Strength Prediction of Adhesively Bonded Joints under Cyclic Thermal Loading Using a Cohesive Zone Model. Int. J. Adhes. Adhes. 2013, 41, 6–15. DOI: 10.1016/j.ijadhadh.2012.10.009.
  • Khoramishad, H.; Crocombe, A.; Katnam, K.; Ashcroft, I. A. Fatigue Damage Modelling of Adhesively Bonded Joints under Variable Amplitude Loading Using a Cohesive Zone Model. Eng. Fract. Mech. 2011, 78(18), 3212–3225. DOI: 10.1016/j.engfracmech.2011.09.008.
  • Campilho, R.; Pinto, A.; Banea, M. D.; Silva, R. F.; Da Silva, L. F. M. Strength Improvement of Adhesively-Bonded Joints Using a Reverse-Bent Geometry. J. Adhes. Sci. Technol. 2011, 25(18), 2351–2368. DOI: 10.1163/016942411X580081.
  • Da Silva, L. F.; De Magalhães, F.; Chaves, F.; de Moura, M. F. S. F. Mode II Fracture Toughness of a Brittle and a Ductile Adhesive as a Function of the Adhesive Thickness. J. Adhes. 2010, 86(9), 891–905. DOI: 10.1080/00218464.2010.506155.
  • Campilho, R.; De Moura, M.; Barreto, A.; Morais, J. J. L.; Domingues, J. J. M. S. Experimental and Numerical Evaluation of Composite Repairs on Wood Beams Damaged by Cross-Graining. Constr. Build. Mater. 2010, 24(4), 531–537. DOI: 10.1016/j.conbuildmat.2009.10.006.
  • Fernandes, R.; de Moura, M. F. S. F.; Silva, F. G. A.; Dourado, N. Mode I Fracture Characterization of a Hybrid Cork and Carbon–Epoxy Laminate. Compos. Struct. 2014, 112, 248–253. DOI: 10.1016/j.compstruct.2014.02.019.
  • Cabello, M.; Turon, A.; Zurbitu, J.; Renart, J.; Sarrado, C.; Martínez, F. Progressive Failure Analysis of DCB Bonded Joints Using a New Elastic Foundation Coupled with a Cohesive Damage Model. Eur. J. Mech.- A/Solids. 2017, 63, 22–35. DOI: 10.1016/j.euromechsol.2016.12.004.
  • Lee, D.-B.; Ikeda, T.; Miyazaki, N.; Choi, N.-S. Effect of Bond Thickness on the Fracture Toughness of Adhesive Joints. Journal of Engineering Materials and Technology. 2004, 126(1), 14–18. DOI: 10.1115/1.1631433.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.