249
Views
8
CrossRef citations to date
0
Altmetric
Research Article

The role of patch hybridization on tensile response of cracked panel repaired with hybrid composite patch: experimental and numerical investigation

&
Pages 53-87 | Received 26 Mar 2019, Accepted 06 Jun 2019, Published online: 18 Jun 2019

References

  • Baker, A.; Gunnion, A. J.; Wang, J. On the Certification of Bonded Repairs to Primary Composite Aircraft Components. J. Adhe. 2015, 91, 4–38. DOI: 10.1080/00218464.2014.883315.
  • Das, S.; Warren, J.; West, D.; Schexnayder, S. M. Global Carbon Fiber Composites Supply Chain Competitiveness Analysis (No. ORNL/SR-2016/100| NREL/TP-6A50-66071); Oak Ridge National Laboratory; The University of Tennessee: Knoxville, 2016.
  • Rasane, A. R.; Kumar, P.; Khond, M. P. Optimizing the Size of a CFRP Patch to Repair a Crack in a Thin Sheet. J. Adhes 2017, 93, 1064–1080. DOI: 10.1080/00218464.2016.1204236.
  • Makwana, A. H.; Shaikh, A. A.; Bakare, A. K.; Chitturi, S. Investigation of Patch Hybridization Effect on the Composite Patch Repair of A Cracked Aluminum Plate: A Pragmatic Approach. Mech. Adv. Mater. Struct 2018, 1–11. doi:10.1080/15376494.2018.1432818.
  • Okafor, A. C.; Singh, N.; Enemuoh, U. E.; Rao, S. V. Design, Analysis and Performance of Adhesively Bonded Composite Patch Repair of Cracked Aluminum Aircraft Panels. Compos. Struct 2005, 71, 258–270. DOI: 10.1016/j.compstruct.2005.02.023.
  • Shinde, P. S.; Kumar, P.; Singh, K. K.; Tripathi, V. K.; Sarkar, P. K. Experimental Study of CFRP Patches Bonded on a Cracked Aluminum Alloy Panel. Compos. Interfaces 2015, 22, 233–248. DOI: 10.1080/15685543.2015.1012426.
  • Albedah, A.; Khan, S. M.; Benyahia, F.; Bouiadjra, B. B. Experimental Analysis of the Fatigue Life of Repaired Cracked Plate in Aluminum Alloy 7075 with Bonded Composite Patch. Eng. Fract. Mech 2015, 145, 210–220. DOI: 10.1016/j.engfracmech.2015.04.008.
  • Beloufa, H. I.; Ouinas, D.; Tarfaoui, M.; Benderdouche, N. Effect of Stacking Sequence of the Bonded Composite Patch on Repair Performance. Struct. Eng. Mech 2016, 57. DOI: 10.12989/sem.2016.57.2.295.
  • Abderahmane, S.; Mokhtar, B. M.; Smail, B.; Wayne, S. F.; Zhang, L.; Belabbes, B. B.; Boualem, S. Experimental and Numerical Disbond Localization Analyses of a Notched Plate Repaired with a CFRP Patch. Struct. Eng. Mec. 2017, 63, 361–370.
  • Khalili, S. M. R., Ghadjar, R., Sadeghinia, M., Mittal, R. K., An experimental study on the Charpy impact response of cracked aluminum plates repaired with GFRP or CFRP composite patches. Composite Structures, 89(2), 270–274.
  • Tsouvalis, N. G.; Mirisiotis, L. S.; Dimou, D. N. Experimental and Numerical Study of the Fatigue Behaviour of Composite Patch Reinforced Cracked Steel Plates. Int. J. Fatigue 2009, 31, 1613–1627. DOI: 10.1016/j.ijfatigue.2009.04.006.
  • Neisiany, R. E.; Khorasani, S. N.; Lee, J. K. Y.; Naeimirad, M.; Ramakrishna, S. Interfacial Toughening of Carbon/Epoxy Composite by Incorporating Styrene Acrylonitrile Nanofibers. Theor. Appl. Fract. Mech 2018, 95, 242–247. DOI: 10.1016/j.tafmec.2018.03.006.
  • Kim, M.; Kim, H.; Lee, W. Repair of Aircraft Structures Using Composite Patches Bonded through Induction Heating. Adv. Compos. Mater 2015, 24, 307–323. DOI: 10.1080/09243046.2014.899553.
  • Meran, A. P.; Samanci, A. Analysis of Various Composite Patches Effect on Mechanical Properties of Notched Al-Mg Plate. Steel Compos. Struct 2017, 25, 685–692.
  • Bouiadjra, B. B.; Benyahia, F.; Albedah, A.; Bouiadjra, B. A. B.; Khan, S. M. Comparison between Composite and Metallic Patches for Repairing Aircraft Structures of Aluminum Alloy 7075 T6. Int. J. Fatigue. 2015, 80, 128–135. DOI: 10.1016/j.ijfatigue.2015.05.018.
  • Ramji, M.; Srilakshmi, R. Design of Composite Patch Reinforcement Applied to Mixed-Mode Cracked Panel Using Finite Element Analysis. J. Reinf. Plast. Compos 2012, 31, 585–595. DOI: 10.1177/0731684412440601.
  • Muda, M. K. H.; Mustapha, F. Composite Patch Repair Using Natural Fiber for Aerospace Applications, Sustainable Composites for Aerospace Applications. In Sustainable Composites for Aerospace Applications, Woodhead Publishing Series in Composites Science and Engineering, United Kingdom, 2018; pp 171–209.
  • Sadeghinia, M.; Khalili, S. M. R.; Ghadjar, R. Impact Behavior of Cracked Plate Repaired with Composite and FML Patches. Adv. Mater. Res 2008, 47, 612–616. Trans Tech Publications DOI: 10.4028/www.scientific.net/AMR.47-50.612.
  • Rachid, M.; Serier, B.; Bouiadjra, B. B.; Belhouari, M. Numerical Analysis of the Patch Shape Effects on the Performances of Bonded Composite Repair in Aircraft Structures. Compos. Part B 2012, 43, 391–397. DOI: 10.1016/j.compositesb.2011.08.047.
  • Constantin, N.; Sandu, M.; Sorohan, Ş. Restoration of the Mechanical Performance of Damaged Al Panels Using Bonded Composite Repair Patches. Int. J. Adhes. Adhes 2013, 42, 69–76. DOI: 10.1016/j.ijadhadh.2013.01.003.
  • Khan, M. A.; Kumar, S. Interfacial Stresses in Single-Side Composite Patch-Repairs with Material Tailored Bondline. Mech. Adv. Mater. Struct 2018, 25, 304–318. DOI: 10.1080/15376494.2016.1255824.
  • Shinde, P. S.; Kumar, P.; Singh, K. K.; Tripathi, V. K.; Aradhi, S.; Sarkar, P. K. The Role of Yield Stress on Cracked Thin Panels of Aluminum Alloys Repaired with a FRP Patch. J. Adhes 2017, 93, 412–429. DOI: 10.1080/00218464.2015.1078243.
  • Pardoen, T.; Marchal, Y.; Delannay, F. Thickness Dependence of Cracking Resistance in Thin Aluminium Plates. J. Mech. Phys. Solids 1999, 47, 2093–2123. DOI: 10.1016/S0022-5096(99)00011-3.
  • Heidarvand, M.; Soltani, N.; Hajializadeh, F. Experimental and Numerical Determination of Critical Stress Intensity Factor of Aluminum Curved Thin Sheets under Tensile Stress. J. Mech. Sci. Technol 2017, 31, 2185–2195. DOI: 10.1007/s12206-017-0414-8.
  • Da Silva, L. F.; Ramos, J. E.; Figueiredo, M. V.; Strohaecker, T. R. Influence of the Adhesive, the Adherend and the Overlap on the Single Lap Shear Strength. J. Adhes. Interface 2006, 7, 1–9.
  • Srilakshmi, R.; Ramji, M.; Chinthapenta, V. Fatigue Crack Growth Study of CFRP Patch Repaired Al 2014-T6 Panel Having an Inclined Center Crack Using FEA and DIC. Eng. Fract. Mech 2015, 134, 182–201. DOI: 10.1016/j.engfracmech.2014.12.012.
  • Banerjee, S.; Sankar, B. V. Mechanical Properties of Hybrid Composites Using Finite Element Method Based Micromechanics. Compos. Part B 2014, 58, 318–327. DOI: 10.1016/j.compositesb.2013.10.065.
  • Gu, L.; Kasavajhala, A. R. M.; Zhao, S. Finite Element Analysis of Cracks in Aging Aircraft Structures with Bonded Composite-Patch Repairs. Compos. Part B 2011, 42, 505–510. DOI: 10.1016/j.compositesb.2010.11.014.
  • Giner, E.; Vercher, A.; Marco, M.; Arango, C. Estimation of the Reinforcement Factor ξ for Calculating the Transverse Stiffness E2 with the Halpin–Tsai Equations Using the Finite Element Method. Compos. Struct 2015, 124, 402–408. DOI: 10.1016/j.compstruct.2015.01.008.
  • Liu, J.; Qin, M.; Zhao, Q.; Chen, L.; Liu, P.; Gao, J. Fatigue Performances of the Cracked Aluminum-Alloy Pipe Repaired with a Shaped CFRP Patch. Thin-Walled Struct 2017, 111, 155–164. DOI: 10.1016/j.tws.2016.11.008.
  • Khalili, S. M. R.; Shariyat, M.; Mokhtari, M. Static Tensile and Transient Dynamic Response of Cracked Aluminum Plate Repaired with Composite Patch – Numerical Study. Appl. Compos. Mater 2014, 21, 441–455. DOI: 10.1007/s10443-014-9390-7.
  • Bouiadjra, B. B.; Belhouari, M.; Serier, B. Computation of the Stress Intensity Factors for Repaired Cracks with Bonded Composite Patch in Mode I and Mixed Mode. Compos. Struct 2002, 56, 401–406. DOI: 10.1016/S0263-8223(02)00023-5.
  • Oudad, W.; Bouiadjra, B. B.; Belhouari, M.; Touzain, S.; Feaugas, X. Analysis of the Plastic Zone Size Ahead of Repaired Cracks with Bonded Composite Patch of Metallic Aircraft Structures. Comput. Mater. Sci 2009, 46, 950–954. DOI: 10.1016/j.commatsci.2009.04.041.
  • Bouiadjra, B. B.; Fekirini, H.; Serier, B.; Benguediab, M. SIF for Inclined Cracks Repaired with Double and Single Composite Patch. Mech. Adv. Mat. Struct 2007, 14, 303–308. DOI: 10.1080/15376490600845454.
  • Da Silva, L. F. M.; Rodrigues, T. N. S. S.; Figueiredo, M. A. V.; De Moura, M. F. S. F.; Chousal, J. A. G. Effect of Adhesive Type and Thickness on the Lap Shear Strength. J. Adhes 2006, 82, 1091–1115. DOI: 10.1080/00218460600948511.
  • Araldite 2010, Huntsman Advanced Materials (Switzerland) GmbH, Klybeckstrasse 200, 4057 Basel, Switzerland.
  • Papanikos, P.; Tserpes, K. I.; Labeas, G.; Pantelakis, S. Progressive Damage Modelling of Bonded Composite Repairs. Theor. Appl. Fract. Mech 2005, 43, 189–198. DOI: 10.1016/j.tafmec.2005.01.004.
  • Maleki, H. N.; Chakherlou, T. N. Investigation of the Effect of Bonded Composite Patch on the Mixed-Mode Fracture Strength and Stress Intensity Factors for an Edge Crack in Aluminum Alloy 2024-T3 Plates. J. Reinf. Plast. Compos 2017, 36, 1074–1091. DOI: 10.1177/0731684417702001.
  • Aglan, H. A.; Gan, Y. X.; Wang, Q. Y.; Kehoe, M. Design Guidelines for Composite Patches Bonded to Cracked Aluminum Substrates. J. Adhes. Sci. Technol 2002, 16, 197–211. DOI: 10.1163/156856102317293704.
  • Khalili, S.M.R.; Shiravi, M.; Nooramin, A.S. Mechanical behavior of notched plate repaired with polymer composite and smart patches-experimental study. J. Reinf. Plast. Compos 2010, 29, 3021–3037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.