560
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Creep behaviour of a graphene-reinforced epoxy adhesively bonded joint: experimental and numerical investigation

, , , , &
Pages 1189-1210 | Received 12 Feb 2020, Accepted 10 Mar 2020, Published online: 01 Apr 2020

References

  • Giv, A. N.; Ayatollahi, M. R.; Ghaffari, S. H.; da Silva, L. F. M. Effect of Reinforcements at Different Scales on Mechanical Properties of Epoxy Adhesives and Adhesive Joints: A Review. J. Adhes. 2018, 94(13), 1082–1121. DOI: 10.1080/00218464.2018.1452736.
  • Atif, R.; Shyha, I.; Inam, F. Mechanical, Thermal, and Electrical Properties of Graphene-Epoxy Nanocomposites – A Review. Polymers. 2016, 8(8), 281. DOI: 10.3390/polym8080281.
  • Bhattacharya, M.;. Polymer Nanocomposites – A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers. Materials. 2016, 9(4), 262. DOI: 10.3390/ma9040262.
  • Barbosa, A. Q.; da Silva, L. F. M.; Banea, M. D. Methods to Increase the Toughness of Adhesives with Micro Particles: An Overview with Focus on Cork Particles. Materialwissenschaft und Werkstofftechnik. 2016, 47(4), 307–325. DOI: 10.1002/mawe.v47.4.
  • Yasmin, A.; Luo, J. J.; Abot, J. L.; Daniel, I. M. Mechanical and Thermal Behavior of Clay/epoxy Nanocomposites. Compos. Sci. Technol. 2006, 66(14), 2415–2422. DOI: 10.1016/j.compscitech.2006.03.011.
  • Guedes, R. M. Creep and Fatigue in Polymer Matrix Composites; Elsevier: Amsterdam, The Netherlands, 2010.
  • Tang, L. C.; Wang, X.; Gong, L. X.; Peng, K.; Zhao, L.; Chen, Q.; Wu, L. B.; Jiang, J. X.; Lai, G. Q. Creep and Recovery of Polystyrene Composites Filled with Graphene Additives. Compos. Sci. Technol. 2014, 91, 63–70. DOI: 10.1016/j.compscitech.2013.11.028.
  • Drozdov, A. D.; Lejre, A. L. H.; Christiansen, J. C. Viscoelasticity, Viscoplasticity, and Creep Failure of Polypropylene/clay Nanocomposites. Compos. Sci. Technol. 2009, 69(15–16), 2596–2603. DOI: 10.1016/j.compscitech.2009.07.018.
  • Ganß, M.; Satapathy, B. K.; Thunga, M.; Weidisch, R.; Potschke, P.; Janke, A. Temperature Dependence of Creep Behavior of PP-MWNT Nanocomposites. Macromol. Rapid Commun. 2007, 28, 1624–1633. DOI: 10.1002/marc.200700288.
  • Wang, X.; Gong, L. X.; Tang, L. C.; Peng, K.; Pei, Y. B.; Zhao, L.; Wu, L. B.; Jiang, J. X. Temperature Dependence of Creep and Recovery Behaviors of Polymer Composites Filled with Chemically Reduced Graphene Oxide. Composites: Part A. 2015, 69, 288–298. DOI: 10.1016/j.compositesa.2014.11.031.
  • Yao, Z.; Wu, D.; Chen, C.; Zhang, M. Creep Behavior of Polyurethane Nanocomposites with Carbon Nanotubes. Composites: Part A. 2013, 50, 65–72. DOI: 10.1016/j.compositesa.2013.03.015.
  • Hassanzadeh-Aghdam, M. K.; Ansari, R.; Mahmoodi, M. J.; Darvizeh, A. Effect of Nanoparticle Aggregation on the Creep Behavior of Polymer Nanocomposites. Compos. Sci. Technol. 2018, 162, 93–100. DOI: 10.1016/j.compscitech.2018.04.025.
  • Zandiatashbar, A.; Picu, C. R.; Koratkar, N. Control of Epoxy Creep Using Graphene. Small. 2012, 8(11), 1676–1682. DOI: 10.1002/smll.v8.11.
  • Khabaz-Aghdam, A.; Behjat, B.; da Silva, L. F. M.; Marques, E. A. S. Tensile Creep Behavior of an Epoxy-graphene Composite: Experimental and Theoretical Investigation. J. Compos. Mater. 2020, 002199831989580. DOI: 10.1177/0021998319895806. https://journals.sagepub.com/doi/abs/10.1177/0021998319895806#articleCitationDownloadContainer.
  • da Silva, L. F. M.; Adams, R. D.; Gibbs, M. Manufacture of Adhesive Joints and Bulk Specimens with High-temperature Adhesives. Int. J. Adhes. Adhes. 2004, 24(1), 69–83. DOI: 10.1016/S0143-7496(03)00101-5.
  • Marques, E. A. S.; da Silva, L. F. M.; Banea, M. D.; Carbas, R. J. C. Adhesive Joints for Low- and High-Temperature Use: An Overview. J. Adhes. 2015, 91(7), 556–585. DOI: 10.1080/00218464.2014.943395.
  • Reis, P. N. B.; Pereira, A. M.; Ferreira, J. A. M.; Costa, J. D. M. Cyclic Creep Response of Adhesively Bonded Steel Lap Joints. J. Adhes. 2017, 93(9), 704–715. DOI: 10.1080/00218464.2016.1146880.
  • Meshgin, P.; Choi, K. K.; Taha, M. M. R. Experimental and Analytical Investigations of Creep of Epoxy Adhesive at the Concrete–FRP Interfaces. Int. J. Adhes. Adhes. 2009, 29(1), 56–66. DOI: 10.1016/j.ijadhadh.2008.01.003.
  • Han, X.; Crocombe, A. D.; Anwar, S. N. R.; Hu, P. The Strength Prediction of Adhesive Single Lap Joints Exposed to Long Term Loading in a Hostile Environment. Int. J. Adhes. Adhes. 2014, 55, 1–11. DOI: 10.1016/j.ijadhadh.2014.06.013.
  • Marques, E. A. S.; Carbas, R. J. C.; Silva, F.; da Silva, L. F. M.; de Paiva, D. P. S.; Magalhães, F. D. Use of Master Curves Based on Time-temperature Superposition to Predict Creep Failure of Aluminium-glass Adhesive Joints. Int. J. Adhes. Adhes. 2017, 74, 144–154. DOI: 10.1016/j.ijadhadh.2016.12.007.
  • Zehsaz, M.; Vakili-Tahami, F.; Saeimi-Sadigh, M. A. Creep Analysis of Adhesively Bonded Single Lap Joint Using Finite Element Method. J. Mech. Sci. Technol. 2014, 28(7), 2743–2748. DOI: 10.1007/s12206-014-0508-5.
  • Zehsaz, M.; Vakili-Tahami, F.; Saeimi-Sadigh, M. A. Parametric Study of the Creep Failure of Double Lap Adhesively Bonded Joints. Mater. Des. 2014, 64, 520–526. DOI: 10.1016/j.matdes.2014.08.003.
  • Khalili, S. M. R.; Fathollahi, M. R. Creep Analysis in Smart Single-strap Adhesive Joints Reinforced by Shape Memory Alloys – Experimental Study. Int. J. Adhes. Adhes. 2014, 54, 21–29. DOI: 10.1016/j.ijadhadh.2014.03.008.
  • Khalili, S. M. R.; Jafarkarimi, M. H.; Abdollahi, M. A. Creep Analysis of Fiber Reinforced Adhesives in Single Lap Joints – Experimental Study. Int. J. Adhes. Adhes. 2009, 29(6), 656–661. DOI: 10.1016/j.ijadhadh.2009.02.007.
  • Khoramishad, H.; Ashofteh, R. S. Influence of Multiwalled Carbon Nanotubes on Creep Behavior of Adhesively Bonded Joints Subjected to Elevated Temperatures. J. Adhes. 2018, 95(11), 979–994. DOI: 10.1080/00218464.2018.1451333.
  • ASM Handbook. Vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International: Kinsman Road Materials Park, OH 44073-0002, 1990.
  • NF T 76-142. Methode de preparation de plaques d’adhesifs structuraux pour la realisation d’eprouvettes d’essai de caracterisation; 1988.
  • Han, X.; Pickering, E.; Bo, A.; Gu, Y. Characterisation on the Hygrothermal Degradation in the Mechanical Property of Structural Adhesive: A Novel Meso-scale Approach. Compos. B Eng. 2020, 182, 107609. DOI: 10.1016/j.compositesb.2019.107609.
  • Hasan, O. A.; Boyce, M. C. A Constitutive Model for the Nonlinear Viscoelastic Viscoplastic Behavior of Glassy Polymers. Polym. Eng. Sci. 1995, 35(4), 331–344. DOI: 10.1002/()1548-2634.
  • Nada, H.; Abe, S.; Shizawa, K. Multiscale Modeling for Large Deformation of Glassy Polymer Based on Molecular Chain Slip Model and Probabilistic Response Law of Inelasticity. Key Eng. Mater. 2007, 340-341, 1109–1114.
  • Layek, R. K.; Nandi, A. K. A Review on Synthesis and Properties of Polymer Functionalised Graphene. Polymer. 2013, 54(19), 5087–5103. DOI: 10.1016/j.polymer.2013.06.027.
  • Wan, Y. J.; Tang, L. C.; Yan, D.; Zhao, L.; Li, Y. B.; Wu, L. B.; Jiang, J. X.; Lai, G. Q. Improved Dispersion and Interface in the Graphene/Epoxy Composites via a Facile Surfactant-assisted Process. Compos. Sci. Technol. 2013, 82, 60–68. DOI: 10.1016/j.compscitech.2013.04.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.