143
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Curie–supported accelerated curing by means of inductive heating – Part II Validation and numerical studies

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2045-2077 | Received 15 Mar 2021, Accepted 30 Jun 2021, Published online: 13 Jul 2021

References

  • He, Z. W.; Xiao, Y. Experimental Study on Axial Pull-Out Behavior of Steel Rebars Glued-In Glubam. J. Mater. Civil Eng. 2020, 32(3), 4020021. DOI: 10.1061/(ASCE)MT.1943-5533.0003080.
  • Ling, Z.; Yang, H.; Liu, W.; Lu, W.; Zhou, D.; Wang, L. Pull-out Strength and Bond Behaviour of Axially Loaded Rebar Glued-in Glulam. Constr. Build. Mater. 2014, 65, 440–449. DOI: 10.1016/j.conbuildmat.2014.05.008.
  • Otero, D.; Estévez, J.; Martín, E.; Vázquez, J. A. Experimental Test of Threaded Steel RodsGlued-in Hardwood with Epoxy. WIT Trans. Built. Environ. 2006, 85. DOI: 10.2495/HPSM060071.
  • Ratsch, N.; Böhm, S.; Voß, M.; Adam, M.; Wirries, J.; Vallée, T. Accelerated Curing of Glued-in Threaded Rods by Means of Inductive Heating – Part I: Experiments. J. Adhes. 2019, 1–26. DOI: 10.1080/00218464.2019.1654864.
  • Stepinac, M.; Rajčić, V.; Hunger, F.; van de Kuilen, J. W. G. Glued-in Rods in Beech Laminated Veneer Lumber. Eur. J. Wood Prod. 2016, 74(3), 463–466. DOI: 10.1007/s00107-016-1037-y.
  • Steiger, R.; Gehri, E.; Widmann, R. Pull-out Strength of Axially Loaded Steel Rods Bonded in Glulam Parallel to the Grain. Mater. Struct. 2007, 40, 69–78. DOI: 10.1617/s11527-006-9111-2.
  • Zhang, X.; Jiang, Z.; Fei, B.; Fang, C.; Liu, H. Experimental Performance of Threaded Steel Glued into Laminated Bamboo. Constr. Build. Mater. 2020, 249, 118780. DOI: 10.1016/j.conbuildmat.2020.118780.
  • Tlustochowicz, G.; Serrano, E.; Steiger, R. State-of-the-art Review on Timber Connections with Glued-in Steel Rods. Mater. Struct. 2011, 44(5), 997–1020. DOI: 10.1617/s11527-010-9682-9.
  • Cousin, P.; Hassan, M.; Vijay, P. V.; Robert, M.; Benmokrane, B. Chemical Resistance of Carbon, Basalt, and Glass Fibers Used in FRP Reinforcing Bars. J. Compos. Mater. 2019, 53(26–27), 3651–3670. DOI: 10.1177/0021998319844306.
  • O’Neill, C.; McPolin, D.; Taylor, S. E.; Harte, A. M.; O’Ceallaigh, C.; Sikora, K. S. Timber Moment Connections Using Glued-in Basalt FRP Rods. Constr. Build. Mater. 2017, 145, 226–235. DOI: 10.1016/j.conbuildmat.2017.03.241.
  • Micelli, F.; Scialpi, V.; La Tegola, A. Flexural Reinforcement of Glulam Timber Beams and Joints with Carbon Fiber-Reinforced Polymer Rods. J. Compos. Constr. 2005, 9(4), 337–347. DOI: 10.1061/(ASCE)1090-0268(2005)9:4(337).
  • Zhu, H.; Faghani, P.; Tannert, T. Experimental Investigations on Timber Joints with Single Glued-in FRP Rods. Constr. Build. Mater. 2017, 140, 167–172. DOI: 10.1016/j.conbuildmat.2017.02.091.
  • O’Neill, C.; McPolin, D.; Taylor, S. E.; Martin, T.; Harte, A. M. Glued-in Basalt FRP Rods under Combined Axial Force and Bending Moment: An Experimental Study. Compos. Struct. 2018, 186, 267–273. DOI: 10.1016/j.compstruct.2017.12.029.
  • Ramage, M.; Toumpanaki, E. Bond Performance of Glued-in CFRP and GFRP Rods in Timber, 2019.
  • Tannert, T.; Zhu, H.; Myslicki, S.; Walther, F.; Vallée, T. Tensile and Fatigue Investigations of Timber Joints with Glued-in FRP Rods. J. Adhes. 2017, 93(11), 926–942. DOI: 10.1080/00218464.2016.1190653.
  • Verdet, M.; Salenikovich, A.; Cointe, A.; Coureau, J.-L.; Galimard, P.; Toro, W. M.; Blanchet, P.; Delisée, C. Mechanical Performance of Polyurethane and Epoxy Adhesives in Connections with Glued-in Rods at Elevated Temperatures. BioResources. 2016, 11(4), 8200–8214. DOI: 10.15376/biores.11.4.8200-8214.
  • Sangermano, M.; Razza, N.; Crivello, J. V. Cationic UV-Curing: Technology and Applications. Macromol. Mater. Eng. 2014, 299(7), 775–793. DOI: 10.1002/mame.201300349.
  • Boey, F. Y. C.; Yap, B. H.; Chia, L. Microwave Curing of Epoxy-amine System — Effect of Curing Agent on the Rate Enhancement. Polym. Test. 1999, 18(2), 93–109. DOI: 10.1016/S0142-9418(98)00014-2.
  • Lopata, V. J.; Saunders, C. B.; Singh, A.; Janke, C. J.; Wrenn, G. E.; Havens, S. J. Electron-beam-curable Epoxy Resins for the Manufacture of High-performance Composites. Radiat. Phys. Chem. 1999, 56(4), 405–415. DOI: 10.1016/S0969-806X(99)00330-8.
  • Ramakrishnan, B.; Zhu, L.; Pitchumani, R. Curing of Composites Using Internal Resistive Heating. J. Manuf. Sci. Eng. 2000, 122(1), 124–131. DOI: 10.1115/1.538913.
  • Schledjewski, R.; Miaris, A. Thermoplastic Tape Placement by Means of Diode Laser Heating, 2009.
  • Jang, S.-H.; Kim, D.; Park, Y.-L. Accelerated Curing and Enhanced Material Properties of Conductive Polymer Nanocomposites by Joule Heating. Materials. 2018, 11(9), 1775. DOI: 10.3390/ma11091775.
  • Javadi, A.; Mehr, H. S.; Sobani, M.; Soucek, M. D. Cure-on-command Technology: A Review of the Current State of the Art. Prog. Org. Coat. 2016, 100, 2–31. DOI: 10.1016/j.porgcoat.2016.02.014.
  • Abliz, D.; Duan, Y.; Steuernagel, L.; Xie, L.; Li, D.; Ziegmann, G. Curing Methods for Advanced Polymer Composites - A Review. Polym. Polym. Composites. 2013, 21(6), 341–348. DOI: 10.1177/096739111302100602.
  • Frauenhofer, M.; Kunz, H.; Dilger, K. Fast Curing of Adhesives in the Field of CFRP. J. Adhes. 2012, 88(4–6), 406–417. DOI: 10.1080/00218464.2012.660386.
  • Tay, T. E.; Fink, B. K.; McKnight, S. H.; Yarlagadda, S.; Gillespie, J. W. Accelerated Curing of Adhesives in Bonded Joints by Induction Heating. J. Compos. Mater. 1999, 33(17), 1643–1664. DOI: 10.1177/002199839903301704.
  • Suwanwatana, W.; Yarlagadda, S.; Gillespie, J. W. Hysteresis Heating Based Induction Bonding of Thermoplastic Composites. Compos. Sci. Technol. 2006, 66(11–12), 1713–1723. DOI: 10.1016/j.compscitech.2005.11.009.
  • Bayerl, T.; Duhovic, M.; Mitschang, P.; Bhattacharyya, D. The Heating of Polymer Composites by Electromagnetic Induction – A Review. Compos. Part A Appl. Sci. Manuf. 2014, 57, 27–40. DOI: 10.1016/j.compositesa.2013.10.024.
  • Severijns, C.; de Freitas, S. T.; Poulis, J. A. Susceptor-assisted Induction Curing Behaviour of a Two Component Epoxy Paste Adhesive for Aerospace Applications. Int. J. Adhes. Adhes. 2017, 75, 155–164. DOI: 10.1016/j.ijadhadh.2017.03.005.
  • Hubbard, J. W.; Orange, F.; Guinel, M. J.-F.; Guenthner, A. J.; Mabry, J. M.; Sahagun, C. M.; Rinaldi, C. Curing of a Bisphenol E Based Cyanate Ester Using Magnetic Nanoparticles as an Internal Heat Source through Induction Heating. ACS Appl. Mater. Interfaces. 2013, 5(21), 11329–11335. DOI: 10.1021/am4035575.
  • Yarlagadda, S.; Fink, B. K.; Gillespie, J. W. Resistive Susceptor Design for Uniform Heating during Induction Bonding of Composites. J. Thermoplast. Compos. Mater. 1998, 11(4), 321–337. DOI: 10.1177/089270579801100403.
  • Riccio, A.; Russo, A.; Raimondo, A.; Cirillo, P.; Caraviello, A. A Numerical/experimental Study on the Induction Heating of Adhesives for Composite Materials Bonding. Mater. Today Commun. 2018, 15, 203–213. DOI: 10.1016/j.mtcomm.2018.03.008.
  • Voß, M.; Vallée, T. Effects of Curie Particle Induced Accelerated Curing on Thermo-mechanical Performance of 2K Structural Adhesives – Part I Bulk Properties. J. Adhes. 2020.
  • Voß, M.; Vallée, T. Effects of Curie Particle Induced Accelerated Curing on Thermo-mechanical Performance of 2K Structural Adhesives – Part II Lap Shear Strength. J. Adhes. 2020.
  • Voß, M.; Kaufmann, M.; Haupt, J.; Vallée, T.; Albiez, M. Accelerated Curing of Adhesively Bonded G-FRP Tube Connections - Part I Experiments: Not yet Published. J. Adhes. 2021.
  • Voß, M.; Vallée, T. Accelerated Curing of G-FRP Rods Glued into Timber by Means of Inductive Heating Using Curie-particles – Large-scale Experiments at Room Temperature. J. Adhes. 2020, 1–29. DOI: 10.1080/00218464.2020.1803067.
  • Bae, D.; Shin, P.; Kwak, S.; Moon, M.; Shon, M.; Oh, S.; Kim, G. Heating Behavior of Ferromagnetic Fe Particle-embedded Thermoplastic Polyurethane Adhesive Film by Induction Heating. J. Ind. Eng. Chem. 2015, 30, 92–97. DOI: 10.1016/j.jiec.2015.05.007.
  • Bae, D. H.; Shon, M. Y.; Oh, S. T.; Kim, G. N. Study on the Heating Behavior of Fe3O4-Embedded Thermoplastic Polyurethane Adhesive Film via Induction Heating. Bull. Korean Chem. Soc. 2016, 37(8), 1211–1218. DOI: 10.1002/bkcs.10841.
  • Bae, D.; Moon, M. J.; Shon, M. Y.; Oh, S. T.; Kim, G. N.; Yun, D. W. Study on the Heating Behavior of Ni-embedded Thermoplastic Polyurethane Adhesive Film via Induction Heating. J. Adhes. 2017, 93(12), 964–979. DOI: 10.1080/00218464.2016.1194205.
  • Lm, T.; Kwon, Y.; Choi, S.; Shon, M.; Jeon, H.; Oh, S.; Kim, G. Heating Behavior and Adhesion Performance of Induction-heated Multilayered Thermoplastic Polyurethane Adhesive Film. J. Adhes. 2020, 96(13), 1186–1197. DOI: 10.1080/00218464.2019.1565757.
  • Cebrian, A.; Moser, P.; Zogg, M.; Ermanni, P. Paste Adhesive Modification for Induction Curing. undefined. 2012.
  • Voß, M.; Vallée, T. Accelerated Curing of G-FRP Rods Glued into Timber by Means of Inductive Heating – Influences of Curing Kinetics. J. Adhes. 2020, 1–29. Doi: 10.1080/00218464.2020.1803067.
  • Blanco, M.; Corcuera, M. A.; Riccardi, C. C.; Mondragon, I. Mechanistic Kinetic Model of an Epoxy Resin Cured with a Mixture of Amines of Different Functionalities. Polymer. 2005, 46(19), 7989–8000. DOI: 10.1016/j.polymer.2005.06.117.
  • Rabearison, N.; Jochum, C.; Grandidier, J. C. A Cure Kinetics, Diffusion Controlled and Temperature Dependent, Identification of the Araldite LY556 Epoxy. J. Mater. Sci. 2011, 46(3), 787–796. DOI: 10.1007/s10853-010-4815-7.
  • Steinhaus, J.; Hausnerova, B.; Haenel, T.; Großgarten, M.; Möginger, B. Curing Kinetics of Visible Light Curing Dental Resin Composites Investigated by Dielectric Analysis (DEA). Dent. Mater. 2014, 30(3), 372–380. DOI: 10.1016/j.dental.2013.12.013.
  • Alonso, M. V.; Oliet, M.; Pérez, J. M.; Rodrı́guez, F.; Echeverrı́a, J. Determination of Curing Kinetic Parameters of Lignin–phenol–formaldehyde Resol Resins by Several Dynamic Differential Scanning Calorimetry Methods. Thermochim. Acta. 2004, 419(1–2), 161–167. DOI: 10.1016/j.tca.2004.02.004.
  • Barnes, S. E.; Brown, E. C.; Corrigan, N.; Coates, P. D.; Harkin-Jones, E.; Edwards, H. G. M. Raman Spectroscopic Studies of the Cure of Dicyclopentadiene (DCPD). Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2005, 61(13–14), 2946–2952. DOI: 10.1016/j.saa.2004.11.005.
  • Kamal, M. R.; Sourour, S. Kinetics and Thermal Characterization of Thermoset Cure. Polym. Eng. Sci. 1973, 13(1), 59–64. DOI: 10.1002/pen.760130110.
  • Sourour, S.; Kamal, M. R. Differential Scanning Calorimetry of Epoxy Cure: Isothermal Cure Kinetics. Thermochim. Acta. 1976, 14(1–2), 41–59. DOI: 10.1016/0040-6031(76)80056-1.
  • Horie, K.; Hiura, H.; Sawada, M.; Mita, I.; Kambe, H. Calorimetric Investigation of Polymerization Reactions. III. Curing Reaction of Epoxides with Amines. undefined. 1970.
  • Arrhenius, S.;. Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Zeitschrift für Physikalische Chemie. 1889, 4U(1), 96–116. DOI: 10.1515/zpch-1889-0408.
  • Chen, C.; Li, Y.; Gu, Y.; Li, M.; Zhang, Z. An Improved Simplified Approach for Curing Kinetics of Epoxy Resins by Nonisothermal Differential Scanning Calorimetry. High Perform. Polym. 2018, 30(3), 303–311. DOI: 10.1177/0954008317693291.
  • Javdanitehran, M.; Berg, D. C.; Duemichen, E.; Ziegmann, G. An Iterative Approach for Isothermal Curing Kinetics Modelling of an Epoxy Resin System. Thermochim. Acta. 2016, 623, 72–79. DOI: 10.1016/j.tca.2015.11.014.
  • D’Elia, R.; Dusserre, G.; Del Confetto, S.; Eberling-Fux, N.; Descamps, C.; Cutard, T. Cure Kinetics of a Polysilazane System: Experimental Characterization and Numerical Modelling. Eur. Polym. J. 2016, 76, 40–52. DOI: 10.1016/j.eurpolymj.2016.01.025.
  • Rogers, A. D.; Lee-Sullivan, P. An Alternative Model for Predicting the Cure Kinetics of a High Temperature Cure Epoxy Adhesive. Polym. Eng. Sci. 2003, 43(1), 14–25. DOI: 10.1002/pen.10001.
  • Leistner, C.; Hartmann, S.; Abliz, D.; Ziegmann, G. Modeling and Simulation of the Curing Process of Epoxy Resins Using Finite Elements. Continuum Mech. Thermodyn. 2020, 32(2), 327–350. DOI: 10.1007/s00161-018-0708-9.
  • Cheung, A.; Yu, Y.; Pochiraju, K. Three-dimensional Finite Element Simulation of Curing of Polymer Composites. Finite Ele. Anal. Des. 2004, 40(8), 895–912. DOI: 10.1016/S0168-874X(03)00119-7.
  • Yi, S.; Hilton, H. H.; Ahmad, M. F. A Finite Element Approach for Cure Simulation of Thermosetting Matrix Composites. Comput. Struct. 1997, 64(1–4), 383–388. DOI: 10.1016/S0045-7949(96)00156-3.
  • Behzad, T.; Sain, M. Finite Element Modeling of Polymer Curing in Natural Fiber Reinforced Composites. Compos. Sci. Technol. 2007, 67(7–8), 1666–1673. DOI: 10.1016/j.compscitech.2006.06.021.
  • Cassano, A. G.; Dev, S.; Maiaru, M.; Hansen, C. J.; Stapleton, S. E. Cure Simulations of Thick Adhesive Bondlines for Wind Energy Applications. J. Appl. Polym. Sci. 2021, 138(10), 49989. DOI: 10.1002/app.49989.
  • Voß, M.; Kaufmann, M.; Vallée, T. Curie-supported Accelerated Curing by Means of Inductive Heating – Part I: Model Building: Not yet Publsihed. J. Adhes. 2021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.