572
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Glued-in multiple steel rod connections in cross-laminated timber

, & ORCID Icon
Pages 810-826 | Received 13 Jul 2021, Accepted 28 Jul 2021, Published online: 08 Aug 2021

References

  • Green, M.; Karsh, E. Tall Wood - the Case for Tall Wood Buildings; Wood Enterprise Coalition: Vancouver, Canada, 2012.
  • Ramage, M. H.; et al. The Wood from the Trees: The Use of Timber in Construction. Renewable Sustainable Energy Rev. 2017, 68, 333–359.
  • Apolinarska, A.; Complex Timber Structures from Simple Elements: Computational Design of Novel Bar Structures for Robotic Fabrication and Assembly. Diss. ETH Zurich, 2018.
  • Brandner, R.; Flatscher, G.; Ringhofer, A.; Schickhofer, G.; Thiel, A. Cross Laminated Timber (CLT): Overview and Development. Eur. J. Wood Wood Prod. 2016, 74, 331–351.
  • Tannert, T.; Lam, F. Vallée T Structural Performance of Rounded Dovetail Connections: Experimental and Numerical Investigations. Eur. J. Wood Wood Prod. 2011, 69, 471–482.
  • Vallée, T.; Tannert, T.; Fecht, S. Adhesively Bonded Connections in the Context of Timber Engineering – A Review. J. Adhes. 2017, 93(4), 257–287. DOI: 10.1080/00218464.2015.1071255.
  • Grunwald, C.; Vallée, T.; Fecht, S.; Bletz-Mühldorfer, O.; Diehl, F.; Bathon, L.; Myslicki, S.; Scholz, R.; Walther, F.; et al. Rods Glued in Engineered Hardwood Products Part I: Experimental Results under Quasi-static Loading. Int. J. Adhes. Adhes. 2019, 90, 163–181. DOI: 10.1016/j.ijadhadh.2018.05.003.
  • Gonzales, E.; Tannert, T.; Vallee, T. The Impact of Defects on the Capacity of Timber Joints with Glued-in Rods. Int. J. Adhes. Adhes. 2016, 65, 33–40. DOI: 10.1016/j.ijadhadh.2015.11.002.
  • Xu, B.-H.; Guo, J.-H.; Bouchaïr, A. Effects of Glue-line Thickness and Manufacturing Defects on the Pull-out Behavior of Glued-in Rods. Int. J. Adhes. Adhes. 2020, 98, 102517. DOI: 10.1016/j.ijadhadh.2019.102517.
  • Luo, L.; Shi, B.; Liu, W.; Yang, H.; Ling, Z.; et al. Experimental Investigation on the Fire Resistance of Glued-In Rod Timber Joints with Heat Resistant Modified Epoxy Resin. Materials. 2020, 13(12), 2731.
  • Tlustochowicz, G.; Serrano, E.; Steiger, R. State-of-the-art Review on Timber Connections with Glued-in Steel Rods. Mater. Struct. 2011, 44(5), 997–1020. DOI: 10.1617/s11527-010-9682-9.
  • Yeboah, D.; Taylor, S.; McPolin, D.; Gilfillan, R.; Gilbert, S.; et al. Behaviour of Joints with Bonded-in Steel Bars Loaded Parallel to the Grain of Timber Elements. Constr. Build. Mater. 2011, 25(5), 2312–2317.
  • Steiger, R.; Serrano, E.; Stepinac, M.; Rajčić, V.; O’Neill, C.; McPolin, D.; Widmann, R.; et al. Strengthening of Timber Structures with Glued-in Rods. Constr. Build. Mater. 2015, 97, 90–105. DOI: 10.1016/j.conbuildmat.2015.03.097.
  • Jockwer, R.; Serano, E. Glued-in Rods as Reinforcement for Timber Structural Elements. Chapter in Springer State-of-the-Art Report of the RILEM TC 245-RTE. In Reinforcement of Timber Elements in Existing Structures; Branco, J., Dietsch, P., Tannert, T., Eds.; 2021; pp. 271.
  • Stepinac, M., et al. Comparison of Design Rules for Glued-in Rods and Design Rule Proposal for Implementation in European Standards. In Proc of CIB-W18, Vancouver, Canada, 2013.
  • Grunwald, C.; Vallée, T.; Fecht, S.; Bletz-Mühldorfer, O.; Diehl, F.; Bathon, L.; Walther, F.; Scholz, R.; Myslicki, S.; et al. Rods Glued in Engineered Hardwood Products Part II: Numerical Modelling and Capacity Prediction. Int. J. Adhes. Adhes. 2019, 90, 182–198. DOI: 10.1016/j.ijadhadh.2018.05.004.
  • Widmann, R.; Steiger, R.; Gehri, E. Pull-out Strength of Axially Loaded Steel Rods Bonded in Glulam Perpendicular to the Grain. Mater. Struct. 2007, 40(8), 827–838. DOI: 10.1617/s11527-006-9214-9.
  • Otero, D.; Estevez, C. J.; Martin, G. E. Withdrawal Strength of Threaded Steel Rods Glued with Epoxy in Wood. Int. J. Adhes. Adhes. 2013, 44, 115–121. DOI: 10.1016/j.ijadhadh.2013.02.008.
  • Ratsch, N.; Böhm, S.; Voß, M.; Adam, M.; Wirries, J.; Vallée, T.; et al. Accelerated Curing of Glued-in Threaded Rods by Means of Inductive heating – Part I: Experiments. J. Adhes. 2021, 97(3), 225–250.
  • Ratsch, N.; Burnett-Barking, M.; Böhm, S.; Myslicki, S.; Voß, M.; Adam, M.; Vallée, T.; et al. Resistive Curing of Glued-in Rods. Constr. Build. Mater. 2021, 268, 121127. DOI: 10.1016/j.conbuildmat.2020.121127.
  • Ratsch, N.; Böhm, S.; Voß, M.; Kaufmann, M.; Vallée, T.; et al. Influence of Imperfections on the Load Capacity and Stiffness of Glued-in Rod Connections. Constr. Build. Mater. 2019, 226, 200–211. DOI: 10.1016/j.conbuildmat.2019.07.278.
  • Blass, H. J.; Laskewitz, B. Effect of Spacing and Edge Distance on the Axial Strength of Glued-in Rods. In Proc of CIB-W18, Graz, Austria, 1999.
  • Gehri, E.; High Performing Jointing Technique Using Glued-in Rods. In proc. World Conference on Timber Engineering, Riva del Garda, Italy, 2010.
  • Broughton, J.; Hutchinson, A. Pull-out Behaviour of Steel Rods Bonded into Timber. Mater. Struct. 2001, 34(2), 100–109. DOI: 10.1007/BF02481558.
  • Riberholt, H.; Glued Bolts in Glulam – Proposal for CIB Code. In Proc. CIB-W 18, Parksville, Canada, 1988.
  • Gehri, E.; Ductile Behaviour and Group Effect of Glued-in Steel Rods. In Proc of International RILEM Symposium on Joints in Timber Structures, Stuttgart, Germany, 2001.
  • Steiger, R.; Gehri, E.; Widmann, R. Pull-out Strength of Axially Loaded Steel Rods Bonded in Glulam Parallel to the Grain. Mater. Struct. 2006, 40(1), 69–78. DOI: 10.1617/s11527-006-9111-2.
  • Gonzales, E.; Avez, C.; Tannert, T. Timber Joints with Multiple Glued-in Steel Rods. J. Adhes. 2016, 92(7–9), 635–651. DOI: 10.1080/00218464.2015.1099098.
  • Bouchard, R.; Salenikovich, A.; Frenette, C.; Bedard-Blanchet, G. Experimental Investigation of Joints with Multiple Glued-in Rods in Glued-laminated Timber under Axial Tensile Loading. Constr. Build. Mater. 2021, 293, 122614. DOI: 10.1016/j.conbuildmat.2021.122614.
  • CEN. prEN 1995-2 European Committee for Standardization; Brussels, Belgium, 2003.
  • NZW-14085 Wellington. Timber Industry Federation Inc: New Zealand, 2007.
  • DIN 1052 Deutsches Institute für Normung; Berlin, Germany, 2008.
  • Bengtsson, C.; Johansson, C. J. GIROD: Glued in Rods for Timber Structures; SP report 2002:26. Swedish national testing and research Institute: Boras, Sweden, 2002.
  • Butterfield, R.; Banerjee, P. K. The Elastic Analysis of Compressible Piles and Pile Groups. Geotechnique. 1971, 21(1), 43–60. DOI: 10.1680/geot.1971.21.1.43.
  • Poulos, H. G.; Mattes, N. S. 1971. Settlement and Load Distribution Analysis of Pile Groups. Aust. Geomech. J. 1.1.
  • Fragiacomo, M.; Batchelar, M. Timber Frame Moment Joints with Glued-in Steel Rods. I Des. J. Struct. Eng. 2012, 138, 789–801.
  • Madhoushi, M.; Ansell, M. Behaviour of Timber Connections Using Glued-in GFRP Rods under Fatigue Loading. Part II Moment-resisting connect. Compos. Part B Eng. 2008, 39(2), 249–257. DOI: 10.1016/j.compositesb.2006.11.002.
  • Xu, B. H.; Li, D.-F.; Zhao, Y.-H.; Bouchaïr, A.; et al. Load-carrying Capacity of Timber Joints with Multiple Glued-in Steel Rods Loaded Parallel to Grain. Eng. Struct. 2020, 225, 111302. DOI: 10.1016/j.engstruct.2020.111302.
  • Azinovic, B.; Serrano, E.; Kramar, M.; Pazlar, T. Experimental Investigation of the Axial Strength of Glued-in Rods in Cross Laminated Timber. Mater. Struct. 2018, 51(6), 143. DOI: 10.1617/s11527-018-1268-y.
  • Azinovic, B.; Danielsson, H.; Serrano, E.; Kramar, M. Glued-in Rods in Cross Laminated Timber-numerical Simulations and Parametric Studies. Constr. Build. Mater. 2019, 212, 431–441. DOI: 10.1016/j.conbuildmat.2019.03.331.
  • SMT Corp. Crosslam CLT Technical Design Guide V4.0, Structurlam, Canada, 2018.
  • PRG320-2019. Standard for Performance-rated Cross-Laminated Timber; The Engineered wood Association. American National Standards Institute (ANSI) and Engineered Wood Association (APA): New York, 2019.
  • ASTM A191/A193M-20 Standard Specification for Alloy-Steel and Stainless Steel Bolting for High Temperature or High Pressure Service and Other Special Purpose Applications; ASTM International, West Conshohocken, PA, 2020.
  • ASTM E8/E8M-16 Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, 2016.
  • ISO 527-1:2019-12. Plastics - Determination of Tensile Properties - Part 1: General Principles.
  • EN 1465 Adhesives. Determination of Tensile Lap-shear Strength of Bonded Assemblies
  • Montgomery, D. C.; Runger, G. C. Applied Statistics and Probability for Engineers; Wiley: New York, 2003.
  • Tannert, T.; Vallee, T.; Hehl, S. Experimental and Numerical Investigations on Adhesively Bonded Hardwood Joints. Int. J. Adhes. Adhes. 2012, 37, 65–69. DOI: 10.1016/j.ijadhadh.2012.01.014.
  • Weibull, W.; The Phenomenon of Rupture in Solids, Ingeniörs Vetenskaps 3320 Akademien Handlingar (Nr. 153); 1939.
  • Tannert, T.; Lam, F.; Vallée, T. Strength Prediction for Rounded Dovetail Connections considering Size Effects. ASCE J. Eng. Mech. 2010, 136(3), 358–366. DOI: 10.1061/(ASCE)0733-9399(2010)136:3(358).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.