125
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Evolution of millimetric-range electrostatic forces between an AFM cantilever and a charged dielectric via suspended force curves

, &
Pages 2277-2294 | Received 03 Feb 2021, Accepted 12 Aug 2021, Published online: 27 Aug 2021

References

  • Binnig, G.; Quate, C. F.; Gerber, C. Atomic Force Bicroscope. Phys. Rev. Lett. 1986, 56(9), 930–933. DOI: 10.1103/PhysRevLett.56.930.
  • Stern, J. E.; Terris, B. D.; Mamin, H. J.; Rugar, D. Deposition and Imaging of Localized Charge on Insulator Surfaces Using a Force Microscope. Appl. Phys. Lett. 1988, 53, 2717–2719. DOI: 10.1063/1.100162.
  • Terris, B. D.; Stern, J. E.; Rugar, D.; Mamin, H. J. Contact Electrification Using Force Microscopy. Phys. Rev. Lett. 1989, 63(24), 2669–2672. DOI: 10.1103/PhysRevLett.63.2669.
  • Weaver, J. M. R.; Abraham, D. W. High Resolution Atomic Force Microscopy Potentiometry. J. Vac. Sci. Technol. B. 1991, 9, 1559–1561. DOI: 10.1116/1.585423.
  • Martin, Y.; Abraham, D. W.; Wickramasinghe, H. K. High-Resolution Capacitance Measurement and Potentiometry by Force Microscopy. Appl. Phys. Lett. 1988, 52(13), 1103–1105. DOI: 10.1063/1.99224.
  • Olbrich, A.; Ebersberger, B.; Boit, C. Conducting Atomic Force Microscopy for Nanoscale Electrical Characterization of Thin SiO2. Appl. Phys. Lett. 1998, 73, 3114–3116. DOI: 10.1063/1.122690.
  • Melitz, W.; Shen, J.; Kummel, A. C.; Lee, S. Kelvin Probe Force Microscopy and Its Application. Surf. Sci. Rep. 2011, 66(1), 1–27. DOI: 10.1016/j.surfrep.2010.10.001.
  • Saint Jean, M.; Hudlet, S.; Guthmann, C.; Berger, J. Van Der Waals and Capacitive Forces in Atomic Force Microscopies. J. Appl. Phys. 1999, 86, 5245–5248. DOI: 10.1063/1.371506.
  • Gomez-Monivas, S.; Froufe, L. S.; Carminati, R.; Greffet, J. J.; Saenz, J. J. Tip-Shape Effects on Electrostatic Force Microscopy Resolution. Nanotechnology. 2001, 12(4), 496–499. DOI: 10.1088/0957-4484/12/4/323.
  • Sacha, G. M.; Verdaguer, A.; Martinez, J.; Saenz, J. J.; Ogletree, D. F.; Salmeron, M. Effective Tip Radius in Electrostatic Force Microscopy. Appl. Phys. Lett. 2005, 86, 123101. DOI: 10.1063/1.1884764.
  • Belaidi, S.; Girard, P.; Leveque, G. Electrostatic Forces Acting on the Tip in Atomic Force Microscopy: Modelization and Comparison with Analytic Expressions. J. Appl. Phys. 1997, 81, 1023–1030. DOI: 10.1063/1.363884.
  • Sacha, G. M.; Saenz, J. J. Cantilever Effects on Electrostatic Force Gradient Microscopy. Appl. Phys. Lett. 2004, 85(13), 2610–2612. DOI: 10.1063/1.1797539.
  • Bonaccurso, E.; Schönfeld, F.; Butt, H.-J. Electrostatic Forces Acting on Tip and Cantilever in Atomic Force Microscopy. Phys. Rev. B. 2006, 74, 085413. DOI: 10.1103/PhysRevB.74.085413.
  • Guriyanova, S.; Golovko, D. S.; Bonaccurso, E. Cantilever Contribution to the Total Electrostatic Force Measured with the Atomic Force Microscope. Meas. Sci. Technol. 2010, 21(2), 025502. DOI: 10.1088/0957-0233/21/2/025502.
  • Koley, G.; Spencer, M. G.; Bhangale, H. R. Cantilever Effects on the Measurement of Electrostatic Potentials by Scanning Kelvin Probe Microscopy. Appl. Phys. Lett. 2001, 79, 545–547. DOI: 10.1063/1.1384004.
  • Elias, G.; Glatzel, T.; Meyer, E.; Schwarzman, A.; Boag, A.; Rosenwaks, Y. The Role of the Cantilever in Kelvin Probe Force Microscopy Measurements. Meas. Sci. Technol. 2011, 2, 252–260. DOI: 10.3762/bjnano.2.29.
  • Butt, H. J.; Cappella, B.; Kappl, M. Force Measurements with the Atomic Force Microscope: Technique, Interpretation and Applications. Surf. Sci. Rep. 2005, 59, 1–152. DOI: 10.1016/j.surfrep.2005.08.003.
  • Rotsch, C.; Radmacher, M. Mapping Local Electrostatic Forces with the Atomic Force Microscope. Langmuir. 1997, 13, 2825–2832. DOI: 10.1021/la960874s.
  • Bunker, M. J.; Davies, M. C.; James, M. B.; Roberts, C. J. Direct Observation of Single Particle Electrostatic Charging by Atomic Force Microscopy. Pharm. Res. 2007, 24(6), 1165–1169. DOI: 10.1007/s11095-006-9230-z.
  • Matsuyama, T.; Ohtsuka, M.-A.; Yamamoto, H. Measurement of Force Curve Due to Electrostatic Charge on a Single Particle Using Atomic Force Microscope [Translated]†. KONA Powder Part. J. 2008, 26, 238–245. DOI: 10.14356/kona.2008021.
  • Chang, J.-M.; Chang, W.-Y.; Chen, F.-R.; Tseng, F.-G. Direct Measurement of Electrostatic Fields Using Single Teflon Nanoparticle Attached to AFM Tip. Nanoscale Res. Lett. 2013, 8(1), 519. DOI: 10.1186/1556-276X-8-519.
  • Villeneuve-Faure, C.; Boudou, L.; Makasheva, K.; Teyssedre, G. Towards 3D Charge Localization by a Method Derived from Atomic Force Microscopy: The Electrostatic Force Distance Curve. J. Phys. D Appl. Phys. 2014, 47, 455302. DOI: 10.1088/0022-3727/47/45/455302.
  • Alhossen, I.; Villeneuve-Faure, C.; Baudoin, F.; Bugarin, F.; Segonds, S. Sensitivity Analysis of the Electrostatic Force Distance Curve Using Sobol’s Method and Design of Experiments. J. Phys. D Appl. Phys. 2017, 50(3), 035304. DOI: 10.1088/1361-6463/50/3/035304.
  • Azib, M.; Baudoin, F.; Binaud, N.; Villeneuve-Faure, C.; Bugarin, F.; Segonds, S.; Teyssedre, G. Numerical Simulations for Quantitative Analysis of Electrostatic Interaction between Atomic Force Microscopy Probe and an Embedded Electrode within a Thin Dielectric: Meshing Optimization, Sensitivity to Potential Distribution and Impact of Cantilever Contribution. J. Phys. D Appl. Phys. 2018, 51, 165302. DOI: 10.1088/1361-6463/aab286.
  • Azib, M.; Baudoin, F.; Binaud, N.; Villeneuve-Faure, C.; Teyssedre, G.; Bugarin, F.; Segonds, S. Sensitivity Analysis of the Electrostatic Interaction between the Atomic Force Microscopy Probe and a Thin Dielectric Film with 3D-Localized Charge Cloud. J. Appl. Phys. 2019, 125, 045305. DOI: 10.1063/1.5060655.
  • Hutter, J. L.; Bechhoefer, J. Calibration of Atomic-Force Microscope Tips. Rev. Sci. Instrum. 1993, 64(7), 1868–1873. DOI: 10.1063/1.1143970.
  • Baytekin, H. T.; Patashinski, A. Z.; Branicki, M.; Baytekin, B.; Soh, S.; Grzybowski, B. A. The Mosaic of Surface Charge in Contact Electrification. Science. 2011, 333, 308–312. DOI: 10.1126/science.1201512.
  • Llovera, P.; Molinié, P.; Soria, A.; Quijano, A. Measurements of Electrostatic Potentials and Electric Fields in Some Industrial Applications: Basic Principles. J. Electrost. 2009, 67(2–3), 457–461. DOI: 10.1016/j.elstat.2009.01.004.
  • Hosono, T.; Kato, K.; Morita, A.; Okubo, H. Surface Charges on Alumina in Vacuum with Varying Surface Roughness and Electric Field Distribution. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 627–633. DOI: 10.1109/TDEI.2007.369523.
  • Du, B. X.; Li, J.; Du, W. Surface Charge Accumulation and Decay on Directfluorinated Polyimide/Al2O3Nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 1764–1771. DOI: 10.1109/TDEI.2013.6633707.
  • Koh, W. S.; Pant, M.; Akimov, Y. A.; Goh, W. P.; Li, Y. Three-Dimensional Optoelectronic Model for Organic Bulk Heterojunction Solar Cells. IEEE J. Photovoltaics. 2011, 1(1), 84–92. DOI: 10.1109/JPHOTOV.2011.2163620.
  • Hata, T.; Gamo, M. Peeling Electrification and Its Decay. Kobunshi. 1967, 16, 340–346. DOI: 10.1295/kobunshi.16.340.
  • Sze, S. M.; Irvin, J. C. Resistivity, Mobility and Impurity Levels in GaAs, Ge, and Si at 300°K. Solid-State Electron. 1968, 11(6), 599–602. DOI: 10.1016/0038-1101(68)90012-9.
  • Caughey, D. M.; Thomas, R. E. Carrier Mobilities in Silicon Empirically Related to Doping and Field. Proc. IEEE. 1967, 55, 2192–2193. DOI: 10.1109/PROC.1967.6123.
  • Kindersberger, J.; Lederle, C. Surface Charge Decay on Insulators in Air and Sulfurhexafluorid - Part I: Simulation. IEEE Trans. Dielectr. Electr. Insul. 2008, 15(4), 941–948. DOI: 10.1109/TDEI.2008.4591214.
  • Kindersberger, J.; Lederle, C. Surface Charge Decay on Insulators in Air and Sulfurhexafluorid-Part II: Measurements. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 949–957. DOI: 10.1109/TDEI.2008.4591215.
  • Zhang, B.; Zhang, G. Interpretation of the Surface Charge Decay Kinetics on Insulators with Different Neutralization Mechanisms. J. Appl. Phys. 2017, 121(10), 105105. DOI: 10.1063/1.4978001.
  • Neves, A.; Martins, H. J. A. In Surface Charging and Charge Decay in Solid Dielectrics. Conference Record of the 1996 IEEE International Symposium on Electrical Insulation, Montreal, Quebec, Canada, June 16-19,1996, pp.782–786.
  • Das-Gupta, D. K. Electrical Properties of Surfaces of Polymeric Insulators. IEEE Trans. Dielectr. Electr. Insul. 1992, 27, 909–923. DOI: 10.1109/14.256469.
  • Xu, Z.; Zhang, L.; Chen, G. Decay of Electric Charge on Corona Charged Polyethylene. J. Phys. D Appl. Phys. 2007, 40(22), 7085–7089. DOI: 10.1088/0022-3727/40/22/033.
  • Molinie, P.; Goldman, M.; Gatellet, J. Surface Potential Decay on Corona-Charged Epoxy Samples Due to Polarization Processes. J. Phys. D Appl. Phys. 1995, 28, 1601–1610. DOI: 10.1088/0022-3727/28/8/009
  • Molinie, P. Measuring and Modeling Transient Insulator Response to Charging: The Contribution of Surface Potential Studies. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 939–950. DOI: 10.1109/TDEI.2005.1522188.
  • Kumara, S.; Serdyuk, Y. V.; Gubanski, S. M. Surface Charge Decay on Polymeric Materials under Different Neutralization Modes in Air. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1779–1788. DOI: 10.1109/TDEI.2011.6032850.
  • Molinie, P. A Review of Mechanisms and Models Accounting for Surface Potential Decay. IEEE Trans. Plasma. Sci. 2012, 40(2), 167–176. DOI: 10.1109/TPS.2011.2171372.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.