1,133
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Estimating the mechanical residual strength from IR spectra using machine learning for degraded adhesives

&
Pages 2423-2445 | Received 30 Jun 2021, Accepted 04 Sep 2021, Published online: 27 Sep 2021

References

  • Viana, G.; Banea, M. D.; Da Silva, L. F. M. Behaviour of Environmentally Degraded Epoxy Adhesives as a Function of Temperature. J. Adhes. 2017, 93(1–2), 95–112. DOI: 10.1080/00218464.2016.1179118.
  • Crocombe, A. D.; Hua, Y. X.; Loh, W. K.; Wahab, M. A.; Ashcroft, I. A. Predicting the Residual Strength for Environmentally Degraded Adhesive Lap Joints. Int. J. Adhes. Adhes. 2006, 26(5), 36–336. DOI: 10.1016/j.ijadhadh.2005.04.003.
  • Goglio, L.; Rezaei, M. Degradation of Epoxy-steel Single Lap Joints Immersed in Water. J. Adhes. 2015, 91(8), 621–636. DOI: 10.1080/00218464.2014.948614.
  • Da Costa, J. A.; Akhavan-Safar, A.; Marques, E. A. S.; Carbas, R. J. C.; Da Silva, L. F. M. Effects of Cyclic Ageing on the Tensile Properties and Diffusion Coefficients of an Epoxy-based Adhesive. Proc. IMechE Part L: J. Mater. Design Appl. 2021, DOI: 10.1177/1464420721994871.
  • Wallau, W.; Recknagel, C. Durability Assessment of Structural Sealant Glazing Systems Applying a Performance Test Method. J. Adhes. 2020, 1–24. DOI: 10.1080/00218464.2020.1840985.
  • Khoramishad, H.; Bayati, H.; Kordzangeneh, D. The Deleterious Effect of Cyclic Hygrothermal Aging on Nanocomposite Adhesives. J. Adhes. 2020, 1–19. DOI: 10.1080/00218464.2020.1845659.
  • Zhou, J.; Lucas, J. P. Hygrothermal Effects of Epoxy Resin. Part II: Variations of Glass Transition Temperature. Polymer. 1999, 40(20), 5513–5522. DOI: 10.1016/S0032-3861(98)00791-5.
  • Zhang, Y.; Adams, R. D.; Da Silva, L. F. M. D. Absorption and Glass Transition Temperature of Adhesives Exposed to Water and Toluene. Int. J. Adhes. Adhes. 2014, 50, 85–92. DOI: 10.1016/j.ijadhadh.2014.01.022.
  • Viana, G.; Costa, M.; Banea, M. D.; Da Silva, L. F. M. A Review on the Temperature and Moisture Degradation of Adhesive Joints. Proc. IMechE Part L. 2017, 231, 488–501. DOI: 10.1177/1464420716671503.
  • Da Costa, J. A.; Akhavan-Safar, A.; Marques, E. A. S.; Carbas, R. J. C.; Da Silva, L. F. M. Cyclic Ageing of Adhesive Materials. J. Adhes. 2021, 1–17. DOI: 10.1080/00218464.2021.1895772.
  • Wylde, J. W.; Spelt, J. K. Measurement of Adhesive Joint Fracture Properties as a Function of Environmental Degradation. Int. J. Adhes. Adhes. 1998, 18(4), 237–246. DOI: 10.1016/S0143-7496(98)00028-1.
  • Loh, W. K.; Crocombe, A. D.; Abdel Wahab, M. M.; Ashcroft, I. A. Environmental Degradation of the Interfacial Fracture Energy in an Adhesively Bonded Joint. Eng. Fract. Mech. 2002, 69(18), 2113–2128. DOI: 10.1016/S0013-7944(02)00004-8.
  • Ameli, A.; Datla, N. V.; Azari, S.; Papini, M.; Spelt, J. K. Prediction of Environmental Degradation of Closed Adhesive Joints Using Data from Open-faced Specimen. Comp. Struct. 2012, 94(2), 779–786. DOI: 10.1016/j.compstruct.2011.09.017.
  • Viana, G.; Costa, M.; Banea, M. D.; Da Silva, L. F. M. Moisture and Temperature Degradation of Double Cantilever Beam Adhesive Joints. J. Adhes. Sci. Technol. 2017, 31(16), 1824–1838. DOI: 10.1080/01694243.2017.1284640.
  • Leplat, J.; Stamoulis, G.; Bidaud, P.; Thévenet, D. Investigation of the Mode I Fracture Properties of Adhesively Bonded Joints after Water Ageing. J. Adhes. 2020, 1–22. DOI: 10.1080/00218464.2020.1818561.
  • Fernando, M.; Harjoprayitno, W. W.; Kinloch, A. J. A Fracture Mechanics Study of the Influence of Moisture on the Fatigue Behaviour of Adhesively Bonded Aluminum-alloy Joints. J. Adhes. Adhes. 1996, 16(2), 113–119. DOI: 10.1016/0143-7496(96)89799-5.
  • Sugiman, S.; Crocombe, A. D.; Aschroft, I. A. The Fatigue Response of Environmentally Degraded Adhesively Bonded Aluminium Structures. Int. J. Adhes. Adhes. 2013, 41, 80–91. DOI: 10.1016/j.ijadhadh.2012.10.003.
  • Costa, M.; Viana, G.; Da Silva, L. F. M.; Campilho, R. D. S. G. Environmental Effect on the Fatigue Degradation of Adhesive Joints: A Review. The Journal of Adhesion. 2017, 93(1–2), 127–146. DOI: 10.1080/00218464.2016.1179117.
  • Mu, W. L.; Xu, Q. H.; Na, J. X.; Wang, H.; Tan, W.; Li, D. F. Influence of Temperature and Humidity on the Fatigue Behaviour of Adhesively Bonded CFRP/aluminium Alloy Joints. J. Adhes. 2021, 1–19. DOI: 10.1080/00218464.2021.1896362.
  • Banea, M. D.; Da Silva, L. F. M.; Carbas, R. J. C.; Cavalcanti, D. K. K.; De Souza, L. F. G. The Effect of Environment and Fatigue Loading on the Behaviour of TEPs Modified Adhesives. J. Adhes. 2020, 96(1–4), 1–4,423–436. DOI: 10.1080/00218464.2019.1680546.
  • Shimamoto, K.; Batorova, S.; Houjou, K.; Akiyama, H., .; Sato, C. Degradation of Epoxy Adhesive Containing Dicyandiamide and Carboxyl-terminated Butadiene Acrylonitrile Rubber Due to Water with Open-faced Specimens. J. Adhes. 2020, 1–16. DOI: 10.1080/00218464.2020.1772061.
  • Houjou, K.; Shimamoto, K.; Akiyama, H.; Sato, C. Effect of Cyclic Moisture Absorption/desorption on the Strength of Epoxy Adhesive Joints and Moisture Diffusion Coefficient. J. Adhes. 2021, 1–17. DOI: 10.1080/00218464.2021.1926242.
  • Bengu, B.; Boerio, F. J. Interaction of Epoxy/dicyandiamide Adhesives with Metal Substrates. J. Adhes. 2006, 82(12), 1133–1155. DOI: 10.1080/00218460600998565.
  • Boubakri, A.; Elleuch, K.; Guermazi, N.; Ayedi, H. F. Investigations on Hygrothermal Aging of Thermoplastic Polyurethane Material. Mater. Design. 2009, 30(10), 3958–3965. DOI: 10.1016/j.matdes.2009.05.038.
  • Calvez, P.; Bistac, S.; Brogly, M.; Richard, J.; Verchère, D. Mechanisms of Interfacial Degradation of Epoxy Adhesive/galvanized Steel Assemblies: Relevance to Durability. J. Adhes. 2012, 88(2), 145–170. DOI: 10.1080/00218464.2012.648067.
  • Wei, T.; Jingxin, N.; Wenlong, M.; Guangbin, W.; Yao, F. Effects of Hygrothermal Aging on the Mechanical Properties of Aluminum Alloy Adhesive Joints for High-speed Train Applications. J. Adhes. 2020, 1–30. DOI: 10.1080/00218464.2020.1828878.
  • Agrawal, A.; Deshpande, P. D.; Cecen, A.; Basavarsu, G. P.; Choudhary, A. N.; Kalidindi, S. R. Exploration of Data Science Techniques to Predict Fatigue Strength of Steel from Composition and Processing Parameters. Integr. Mater. Manuf. Innov. 2014, 3(1), 8. DOI: 10.1186/2193-9772-3-8.
  • Agrawal, A.; Choudhary, A. Perspective: Materials Informatics and Big Data: Realization of the “Fourth Paradigm” of Science in Materials Science. APL Mater. 2016, 4(5), 053208. DOI: 10.1063/1.4946894.
  • Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine Learning for Molecular and Materials Science. Nature. 2018, 559(7715), 547–555. DOI: 10.1038/s41586-018-0337-2.
  • Pruksawan, S.; Lambard, G.; Samitsu, S.; Sodeyama, K.; Naito, M. Prediction and Optimization of Epoxy Adhesive Strength from a Small Dataset through Active Learning. Sci. Technol. Adv. Mater. 2019, 20(1), 1010–1021. DOI: 10.1080/14686996.2019.1673670.
  • Tamura, R.; Watanabe, M.; Mamiya, H.; Washio, K.; Yano, M.; Danno, K.; Kato, A.; Shoji, T. Materials Informatics Approach to Understand Aluminum Alloys. Sci. Technol. Adv. Mater. 2020, 21(1), 540–551. DOI: 10.1080/14686996.2020.1791676.
  • Shimamoto, K.; Batorova, S.; Houjou, K.; Akiyama, H., .; Sato, C. Accelerated Test Method for Water Resistance of Adhesive Joints by Interfacial Cutting of Open-faced Specimens. J. Adhes. 2020. DOI: 10.1080/00218464.2020.1747446.
  • ISO 4587:2003, Adhesives – Determination of Tensile Lap-shear Strength of Rigid-to-rigid Bonded Assemblies, ISO, 2003.
  • Bockenheimer, C.; Fata, D.; Possart, W. New Aspects of Aging in Epoxy Networks. I. Thermal Aging. J. Appl. Polym. Sci. 2004, 91(1), 361–368. DOI: 10.1002/app.13092.
  • Bockenheimer, C.; Fata, D.; Possart, W. New Aspects of Aging in Epoxy Networks. II. Hydrothermal Aging. J. Appl. Polym. Sci. 2004, 91(1), 369–377. DOI: 10.1002/app.13093.
  • Fata, D.; Possart, W. Aging Behavior of a Hot-cured Epoxy System. J. Appl. Polym. Sci. 2006, 99(5), 2726–2736. DOI: 10.1002/app.22819.
  • Meiser, A.; Willstrand, K.; Possart, W. Influence of Composition, Humidity, and Temperature on Chemical Aging in Epoxies: A Local Study of the Interphase with Air. J. Adhes. 2010, 86(2), 222–243. DOI: 10.1080/00218460903418352.
  • Lin-Vien, D.; Colthup, N.; Fateley, W.; Grasselli, J. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules; Elsevier: Amsterdam, 1991; pp 61–72.
  • Max, -J.-J.; Chapados, C. Infrared Spectroscopy of Aqueous Carboxylic Acids: Comparison between Different Acids and Their Salts. J. Phys. Chem. A. 2004, 108(16), 3324–3337. DOI: 10.1021/jp036401t.
  • Morsch, S.; Liu, Y.; Lyon, S. B.; Gibbon, S. R.; Gabriele, B.; Malanin, M.; Eichhorn, K.-J. Examining the Early Stages of Thermal Oxidative Degradation in Epoxy-amine Resins. Polym. Degrad. Stab. 2020, 176, 109147. DOI: 10.1016/j.polymdegradstab.2020.109147.
  • Saviello, D.; Pouyet, E.; Toniolo, L.; Cotte, M.; Nevin, A. Synchrotron-based FTIR Microspectroscopy for the Mapping of Photo-oxidation and Additives in Acrylonitrile–butadiene–styrene Model Samples and Historical Objects. Anal. Chim. Acta. 2014, 843, 59–72. DOI: 10.1016/j.aca.2014.07.021.
  • Konnola, R.; Nair, C. P. R.; Joseph, K. Cross-linking of Carboxyl-terminated Nitrile Rubber with Polyhedral Oligomeric Silsesquioxane. J. Therm. Anal. Calorim. 2016, 123(2), 1479–1489. DOI: 10.1007/s10973-015-5019-9.
  • Hong, S. G.; Wu, C. S. DSC and FTIR Analyses of the Curing Behavior of Epoxy/dicy/solvent Systems on Hermetic Specimens. J. Therm. Anal. Calorim. 2000, 59(3), 711–719. DOI: 10.1023/A:1010189301221.
  • Yamasaki, H.; Morita, S. Epoxy Curing Reaction Studied by Using Two-dimensional Correlation Infrared and Near-infrared Spectroscopy. J. Appl. Polym. Sci. 2011, 119(2), 871–881. DOI: 10.1002/app.32787.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.