219
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Strength enhancement of CFRP joints composed of partially unmolded laminates manufactured using Vacuum-Assisted Resin Transfer Molding (VARTM)

, , , &
Pages 379-405 | Received 01 Oct 2021, Accepted 07 Dec 2021, Published online: 02 Jan 2022

References

  • Burns, L.; Mouritz, A. P.; Pook, D.; Feih, S. Strengthening of Composite T-joints Using Novel Ply Design Approaches. Compos. Part B. 2016, 88, 73–84. DOI: 10.1016/j.compositesb.2015.10.032.
  • Ou, Y.; Zhu, D.; Zhang, H.; Yao, Y.; Mobasher, B.; Huang, L. Mechanical Properties and Failure Characteristics of CFRP under Intermediate Strain Rates and Varying Temperatures. Compos. Part B. 2016, 95, 123–136. DOI: 10.1016/j.compositesb.2016.03.085.
  • Shufeng, L.; Xiaoquan, C.; Qian, Z.; Jie, Z.; Jianwen, B.; Xin, G. An Investigation of Hygrothermal Effects on Adhesive Materials and Double Lap Shear Joints of CFRP Composite Laminates. Compos. Part B. 2016, 91, 431–440. DOI: 10.1016/j.compositesb.2016.01.051.
  • Akderya, T.; Kemiklioğlu, U.; Sayman, O. Effects of Thermal Ageing and Impact Loading on Tensile Properties of Adhesively Bonded Fibre/epoxy Composite Joints. Compos. Part B. 2016, 95, 117–122. DOI: 10.1016/j.compositesb.2016.03.073.
  • Qin, Z.; Yang, K.; Wang, J.; Zhang, L.; Huang, J.; Peng, H.; Xu, J. The Effects of Geometrical Dimensions on the Failure of Composite-to-composite Adhesively Bonded Joints. J. Adhes. 2021, 97(11), 1024–1051. DOI: 10.1080/00218464.2020.1725886.
  • Keller, T.; Vallée, T. Adhesively Bonded Lap Joints from Pultruded GFRP Profiles. Part I: Stress-strain Analysis and Failure Modes. Compos. Part B. 2005, 36(4), 331–340. DOI: 10.1016/j.compositesb.2004.11.001.
  • Araújo, H. A. M.; Machado, J. J. M.; Marques, E. A. S.; Da Silva, L. F. M. Dynamic Behaviour of Composite Adhesive Joints for the Automotive Industry. Compos. Struct. 2017, 171, 549–561. DOI: 10.1016/j.compstruct.2017.03.071.
  • Xiang, J.; Zhao, S.; Li, D.; Wu, Y. An Improved Spring Method for Calculating the Load Distribution in Multi-bolt Composite Joints. Compos. Part B. 2017, 117, 1–8. DOI: 10.1016/j.compositesb.2017.02.024.
  • Abusrea, M. R.; Arakawa, K. Improvement of an Adhesive Joint Constructed from Carbon Fiber-reinforced Plastic and Dry Carbon Fiber Laminates. Compos. Part B. 2016, 97, 368–373. DOI: 10.1016/j.compositesb.2016.05.005.
  • Zhu, S.; Shao, G.; Wang, Y.; Zhu, X.; Zhao, Q. Mechanical Behavior of the CFRP Lattice Core Sandwich Bolted Splice Joints. Compos. Part B. 2016, 93, 265–272. DOI: 10.1016/j.compositesb.2016.03.036.
  • Thoppul, S. D.; Finegan, J.; Gibson, R. F. Mechanics of Mechanically Fastened Joints in Polymer–matrix Composite Structures – A Review. Compos. Sci. Technol. 2009, 69(3–4), 301–329. DOI: 10.1016/j.compscitech.2008.09.037.
  • Friedrich, C.; Hubbertz, H. Friction Behavior and Preload Relaxation of Fastening Systems with Composite Structures. Compos. Struct. 2014, 110, 335–341. DOI: 10.1016/j.compstruct.2013.11.024.
  • Lee, Y. H.; Lim, D. W.; Choi, J. H.; Kweon, J. H.; Yoon, M. K. Failure Load Evaluation and Prediction of Hybrid Composite Double Lap Joints. Compos. Struct. 2010, 92(12), 2916–2926. DOI: 10.1016/j.compstruct.2010.05.002.
  • Lee, H.; Seon, S.; Park, S.; Walallawita, R.; Lee, K. Effect of the Geometric Shapes of Repair Patches on Bonding Strength. J. Adhes. 2021, 97(3), 207–224. DOI: 10.1080/00218464.2019.1649660.
  • Dariushi, S.; Farahmandnia, S.; Rezadoust, A. M. An Experimental Investigation on Infusion Time and Strength of Fiber Metal Laminates Made by Vacuum Infusion Process. Proc. Inst. Mech. Eng. Part L. 2021, 235(8), 1800–1808. DOI: 10.1177/1464420720941890.
  • Oplinger, J. W. Mechanical Fastening and Adhesive Bonding. In Handbook of Composites, Peters, S. T., Ed.; Springer: New York, 1998.
  • Abusrea, M. R.; Jiang, S.; Chen, D.; Arakawa, K. Novel CFRP Adhesive Joints and Structures for Offshore Application. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 2015, 9(9).
  • Chen, D.; Arakawa, K.; Jiang, S. Novel Joints Developed from Partially Un-moulded Carbon-fibre-reinforced Laminates. J. Compos. Mater. 2015, 49(14), 1777–1786. DOI: 10.1177/0021998314540195.
  • Ascione, F. The Influence of Adhesion Defects on the Collapse of FRP Adhesive Joints. Compos. Part B. 2016, 87, 291–298. DOI: 10.1016/j.compositesb.2015.10.033.
  • Rahman, N. M.; Sun, C. T. Strength Calculation of Composite Single Lap Joints with Fiber-Tear-Failure. Compos. Part B. 2014, 62, 249–255. DOI: 10.1016/j.compositesb.2014.03.004.
  • de Castro, J.; Keller, T. Ductile Double-lap Joints from Brittle GFRP Laminates and Ductile Adhesives, Part I: Experimental Investigation. Compos. Part B. 2008, 39(2), 271–281. DOI: 10.1016/j.compositesb.2007.02.015.
  • Heim, D.; Hartmann, M.; Neumayer, J.; Klotz, C.; Ö, A.-T.; Zaremba, S.; Drechsler, K. Novel Method for Determination of Critical Fiber Length in Short Fiber Carbon/carbon Composites by Double Lap Joint. Compos. Part B. 2013, 54, 365–370. DOI: 10.1016/j.compositesb.2013.05.026.
  • Hart-Smith, L. J. Further Developments in the Design and Analysis of Adhesively Bonded Structural Joints. Join. Comp. Mat. ASTM STP. 1981, 749, 3–31.
  • Akpinar, S. The Strength of the Adhesively Bonded Step-lap Joints for Different Step Numbers. Compos. Part B. 2014, 67, 170–178. DOI: 10.1016/j.compositesb.2014.06.023.
  • Li, J.; Yan, Y.; Zhang, T.; Liang, Z. Experimental Study of Adhesively Bonded CFRP Joints Subjected to Tensile Loads. Int. J. Adhes. Adhes. 2015, 57, 95–104. DOI: 10.1016/j.ijadhadh.2014.11.001.
  • Khashaba, U. A.; Aljinaidi, A. A.; Hamed, M. A. Fatigue and Reliability Analysis of Nano-modified Scarf Adhesive Joints in Carbon Fiber Composites. Compos. Part B. 2017, 120, 103–117. DOI: 10.1016/j.compositesb.2017.04.001.
  • Gunnion, A. J.; Herszberg, I. Parametric Study of Scarf Joints in Composite Structures. Compos. Struct. 2006, 75(1), 364–376. DOI: 10.1016/j.compstruct.2006.04.053.
  • Löbel, T.; Kolesnikov, B.; Scheffler, S.; A, S.; Hühne, C. Enhanced Tensile Strength of Composite Joints by Using Staple-like Pins: Working Principles and Experimental Validation. Compos. Struct. 2013, 106, 453–460. DOI: 10.1016/j.compstruct.2013.06.020.
  • Mouritz, A. P.; Chang, P.; Cox, B. N. Fatigue Properties of Z-pinned Aircraft Composite Materials. ICAS Int Cong Aeronaut Sci 2006. https://www.m-chemical.co.jp/en/products/index.html (accessed Oct 23, 2021)
  • Asadi, A.; Abusrea, M. R.; Arakawa, K.; Colton, J.; Kalaitzidou, K. A Comparison of CFRP Composite Laminated Joints Fabricated with Vacuum Assisted Resin Transfer Molding. Express Polym. Lett. 2018, 12(9), 781–789. DOI: 10.3144/expresspolymlett.2018.67.
  • Hashin, Z.; Rotem, A. A Fatigue Failure Criterion for Fiber Reinforced Materials. J. Compos. Mater. 1973, 7(4), 448–464. DOI: 10.1177/002199837300700404.
  • Abusrea, M. R.; Han, S. W.; Arakawa, K.; Choi, N. S. Bending Strength of CFRP Laminated Adhesive Joints Fabricated by Vacuum-assisted Resin Transfer Molding Laminates. Compos. Part B. 2019, 156, 8–16. DOI: 10.1016/j.compositesb.2018.08.041.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.