195
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Effects of surface characteristics of wood on bonding performance of low-molar ratio urea–formaldehyde resin

, , , &
Pages 803-816 | Received 10 Jan 2022, Accepted 19 Mar 2022, Published online: 25 Mar 2022

References

  • Pizzi, A., Mittal, K L. Wood Adhesives. CRC Press: Boca Raton, FL, 2010.
  • Dunky, M. Urea–formaldehyde (UF) Adhesive Resins for Wood. Int. J. Adhes. Adhes. 1998, 18, 95–107. DOI: 10.1016/S0143-7496(97)00054-7.
  • Conner, A. H. Polymeric Materials Encyclopedia; CRC Press: Boca Raton, FL, 1996.
  • Pinkl, S.; van Herwijnen, H. W.; Veigel, S.; Gindl-Altmutter, W.; Riegler, M. Urea-formaldehyde Microspheres as a Potential Additive to Wood Adhesive. J. WOOD SCI. 2018, 64, 390–397. DOI: 10.1007/s10086-018-1717-9.
  • Wang, H.; Cao, M.; Li, T.; Yang, L.; Duan, Z.; Zhou, X.; Du, G. Characterization of the Low Molar Ratio Urea–Formaldehyde Resin with 13C NMR and ESI–MS: Negative Effects of the Post-Added Urea on the Urea–Formaldehyde Polymers. Polymers. 2018, 10, 602. DOI: 10.3390/polym10060602.
  • Antov, P.; Savov, V.; Trichkov, N.; Krišťák, Ľ.; Réh, R.; Papadopoulos, A. N.; Taghiyari, H. R.; Pizzi, A.; Kunecová, D.; Pachikova, M. Properties of High-density Fiberboard Bonded with Urea–formaldehyde Resin and Ammonium Lignosulfonate as a Bio-based Additive. Polymers. 2021, 13, 2775. DOI: 10.3390/polym13162775.
  • Fan, D.; Chu, F.; Qin, T.; Li, J. Effect of Synthesis Conditions on the Structure and Curing Characteristics of High-urea Content PUF Resin. J. Adhes. 2011, 87, 1191–1203. DOI: 10.1080/00218464.2011.628871.
  • He, G.; Riedl, B. Phenol‐urea‐formaldehyde Cocondensed Resol Resins: Their Synthesis, Curing Kinetics, and Network Properties. J. Polym. Sci. Part B: Polym. Phys. 2003, 41, 1929–1938. DOI: 10.1002/polb.10558.
  • Lei, H.; Frazier, C. E. Curing Behavior of Melamine-urea-formaldehyde (MUF) Resin Adhesive. Int. J. Adhes. Adhes. 2015, 62, 40–44. DOI: 10.1016/j.ijadhadh.2015.06.013.
  • Zanetti, M.; Pizzi, A. Colloidal Aggregation of MUF Polycondensation Resins: Formulation Influence and Storage Stability. J. Appl. Polym. Sci. 2004, 91, 2690–2699. DOI: 10.1002/app.13452.
  • Marini, F.; Zikeli, F.; Corona, P.; Vinciguerra, V.; Manetti, M. C.; Portoghesi, L.; Scarascia Mugnozza, G.; Romagnoli, M. IMPact of Bio-based (Tannins) and Nano-scale (CNC) Additives on Bonding Properties of Synthetic Adhesives (Pvac and MUF) Using Chestnut Wood from Young Coppice Stands. Nanomaterials. 2020, 10, 956. DOI: 10.3390/nano10050956.
  • Sinn, G.; Gindl, M.; Reiterer, A.; Stanzl-Tschegg, S. Changes in the Surface Properties of Wood Due to Sanding. Holzforschung. 2004, 58, 246–251. HF.2004.038 DOI: 10.1515/HF.2004.038.
  • Wolkenhauer, A.; Avramidis, G.; Hauswald, E.; Militz, H.; Viöl, W. Sanding Vs. Plasma Treatment of Aged Wood: A coMParison with respect to Surface Energy. Int. J. Adhes. Adhes. 2009, 29, 18–22. DOI: 10.1016/j.ijadhadh.2007.11.001.
  • Hill, C. A. Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons Press: New York, 2007.
  • Pelaez-Samaniego, M. R.; Yadama, V.; Lowell, E.; Espinoza-Herrera, R. A Review of Wood Thermal Pretreatments to Improve Wood Composite Properties. Wood Sci. Technol. 2013, 47, 1285–1319. DOI: 10.1007/s00226-013-0574-3.
  • Totolin, V.; Manolache, S.; Rowell, R.; Denes, F. Application of Cold Plasma to Improve Properties of Phenolic-bonded Aspen Fiberboard. J. Nat. Fibers. 2008, 5, 170–192. DOI: 10.1080/15440470801929671.
  • Talviste, R.; Galmiz, O.; Stupavská, M.; Ráhel’, J. Effect of DCSBD Plasma Treatment Distance on Surface Characteristics of Wood and Thermally Modified Wood. Wood Sci. Technol. 2020, 651–665. DOI: 10.1007/s00226-020-01175-4.
  • Acda, M. N.; Devera, E. E.; Cabangon, R. J.; Romas, H. Effects of Plasma Modification on Adhesion Properties of Wood. Int. J. Adhes. Adhes. 2012, 32, 70–75. DOI: 10.1016/j.ijadhadh.2011.10.003.
  • Safin, R. R.; Khasanshin, R.; Galyavetdinov, N.; Salimgaraeva, R.; Mukhametzyanov, S.; Safina, A.; Kraysman, N. Improving the Physical and Mechanical Performance of Laminated Wooden Structures by Low-Temperature Plasma Treatment. Coatings. 2021, 11, 918. DOI: 10.3390/coatings11080918.
  • Wascher, R.; Leike, N.; Avramidis, G.; Wolkenhauer, A.; Militz, H.; Viöl, W. Improved DMDHEU Uptake of Beech Veneers after Plasma Treatment at Atmospheric Pressure. European Journal of Wood and Wood Products. 2015, 73(4), 433–437. DOI: 10.1007/s00107-015-0916-y.
  • Podgorski, L.; Chevet, B.; Onic, L.; Merlin, A. Modification of Wood Wettability by Plasma and corona Treatments. International Journal of Adhesion and Adhesives. 2000, 20(2), 103–111. DOI: 10.1016/S0143-7496(99)00043-3.
  • Konnerth, J.; Weigl, M.; Gindl-Altmutter, W.; Avramidis, G.; Wolkenhauer, A.; Viöl, W.; Gilge, M.; Obersriebnig, M. Effect of Plasma Treatment on Cell-wall Adhesion of Urea-formaldehyde Resin Revealed by Nanoindentation. Holzforschung. 2014, 68(6), 707–712. DOI: 10.1515/hf-2013-0130.
  • Peng, X.-R.; Zhang, Z.-K. Improvement of Paint Adhesion of Environmentally Friendly Paint Film on Wood Surface by Plasma Treatment. Progress in Organic Coatings. 2019, 134, 255–263. DOI: 10.1016/j.porgcoat.2019.04.024.
  • Wascher, R.; Avramidis, G.; Vetter, U.; Damm,; Damm, R.; Peters, F.; Militz, H.; Viöl, W. Plasma Induced Effects within the Bulk Material of Wood Veneers. Surface and Coatings Technology. 2014, 259, 62–67. DOI: 10.1016/j.surfcoat.2014.07.005.
  • Jamali, A.; Evans, P. Etching of Wood Surfaces by Glow Discharge Plasma. Wood Science and Technology. 2011, 45(1), 169–182. DOI: 10.1007/s00226-010-0317-7.
  • Král, P.; Stupavská, M.; Šrajer, J.; Klímek, P.; Mishra, P. K.; Wimmer, R. XPS Depth Profile of Plasma-activated Surface of Beech Wood (Fagus Sylvatica) and Its iMPact on Polyvinyl Acetate Tensile Shear Bond Strength. Wood sci. techol. 2015, 49, 319–330. DOI: 10.1007/s00226-014-0691-7.
  • Odraskova, R.; Zahoranova, T., Cernak. Plasma Activation of Wood Surface by Diffuse Coplanar Surface Barrier Discharge. Plasma Chem. Plasma. Process. 2008, 200828, 203–211. DOI:10.1007/s11090-007-9117-8.
  • Busnel, F.; Blanchard, V.; Prégent, J.; Stafford, L.; Riedl, B.; Blanchet, P.; Sarkissian, A. Modification of Sugar Maple (Acer Saccharum) and Black Spruce (Picea Mariana) Wood Surfaces in a Dielectric Barrier Discharge (DBD) at Atmospheric Pressure. J. Adhes. Sci. Technol. 2010, 24, 1401–1413. DOI: 10.1163/016942410X501007.
  • Wascher, R.; Schulze, N.; Avramidis, G.; Militz, H.; Vioel, W. Increasing the Water Uptake of Wood Veneers through Plasma Treatment at Atmospheric Pressure. Eur. J. Wood Wood Prod. 2014, 72, 685–687. DOI: 10.1007/s00107-014-0815-7.
  • Magalhães, W. L. E.; de Souza, M. F. Solid Softwood Coated with Plasma-polymer for Water Repellence. Surf. Coat. Technol. 2002, 155, 11–15. DOI: 10.1016/S0257-8972(02)00029-4.
  • Avramidis, G.; Scholz, G.; Nothnick, E.; Militz, H.; Viöl, W.; Wolkenhauer, A. Improved Bondability of Wax-treated Wood following Plasma Treatment. Wood Sci. Technol. 2011, 45, 359–368. DOI: 10.1007/s00226-010-0327-5.
  • Peng, X. R.; Zhang, Z. K. Improvement of Paint Adhesion of Environmentally Friendly Paint Film on Wood Surface by Plasma Treatment - ScienceDirect. Prog. Org. Coat. 2019, 134, 255–263. DOI: 10.1016/j.porgcoat.2019.04.024.
  • Novák, I.; Popelka, A.; Špitalský, Z.; Mičušík, M.; Omastová, M.; Valentin, M.; Sedliačik, J.; Janigová, I.; Kleinová, A.; Šlouf, M. Investigation of Beech Wood Modified by Radio-frequency Discharge Plasma. Vacuum. 2015, 119, 88–94. DOI: 10.1016/j.vacuum.2015.04.038.
  • Rehn, P.; Vioel, W. Dielectric Barrier Discharge Treatments at Atmospheric Pressure for Wood Surface Modification. Holz als Roh- und Werkstoff. 2003, 61, 145–150. DOI: 10.1007/s00107-003-0369-6.
  • Zhu, F.; Li, X.; Zhang, H.; Wu, A.; Yan, J.; Ni, M.; Zhang, H.; Buekens, A. Destruction of Toluene by Rotating Gliding Arc Discharge. Fuel. 2016, 176, 78–85. DOI: 10.1016/j.fuel.2016.02.065.
  • Pawłat, J.; Terebun, P.; Kwiatkowski, M.; Tarabová, B.; Kovaľová, Z.; Kučerová, K.; Machala, Z.; Janda, M.; Hensel, K. Evaluation of Oxidative Species in Gaseous and Liquid Phase Generated by Mini-gliding Arc Discharge. Plasma Chem. Plasma. Process. 2019, 39, 627–642. DOI: 10.1007/s11090-019-09974-9.
  • Collett, B.M. A Review of Surface and Interracial Adhesion in Wood Science and Related Fields. Wood Sci. Technol. 1972, 6, 1–42. DOI: 10.1007/BF00351806.
  • Vitosyte, J.; Ukvalbergiené, K.; Keturakis, G. The Effects of Surface Roughness on Adhesion Strength of Coated Ash (Fraxinus Excelsior L.) And Birch (Betula L.) Wood. Mater. Sci. 2012, 18, 347–351. DOI: 10.5755/j01.ms.18.4.3094.
  • Ugulino, B.; Hernández, B.; E, R. Analysis of Sanding parameters on Surface Properties and Coating Performance of Red Oak Wood. Wood Mater. Sci. Eng. 2018, 13, 64–72. DOI: 10.1080/17480272.2016.1266511.
  • Pizzi, A.; Mtsweni, B.; Parsons, P. Wood-induced Catalytic Activation of PF Adhesives Autopolymerization Vs. PF/wood Covalent Bonding. J. Appl. Polym. Sci. 1994, 52(1847), 1865. DOI: 10.1002/app.1994.070521302.
  • Pizzi, A. Advanced Wood Adhesives Technology; Marcel Dekker: New York, 1994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.