283
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Mode Ι fracture toughness of adhesively bonded composite joints under high loading rate conditions

, , &
Pages 893-909 | Received 14 Jan 2022, Accepted 25 Mar 2022, Published online: 10 Apr 2022

References

  • Budhe, S.; Banea, M. D.; Barros, S. D.; da Silva, L. F. M. An Updated Review of Adhesively Bonded Joints in Composite Materials. Int. J. Adhes. Adhes. 2016, 72, 30–42. DOI: 10.1016/j.ijadhadh.2016.10.010.
  • Feng, W.; Xu, F.; Yuan, J. L.; Zang, Y. Y.; Zhang, X. Y. Focusing on In-service Repair to Composite Laminates of Different Thicknesses via Scarf-repaired Method. Compos. Struct. 2019, 207, 826–835. DOI: 10.1016/j.compstruct.2018.09.096.
  • Liu, B.; Han, Q.; Zhong, X. P.; Lu, Z. X. The Impact Damage and Residual Load Capacity of Composite Stepped Bonding Repairs and Joints. Compos. Part B-Eng. 2019, 158, 339–351. DOI: 10.1016/j.compositesb.2018.09.096.
  • Khashaba, U. A. Dynamic Analysis of Scarf Adhesive Joints in Carbon-Fiber Composites at Different Temperatures. AIAA J. 2020, 58(9), 242–257. DOI: 10.2514/1.J059334.
  • Akpinar, S.; Sahin, R. The Fracture Load Analysis of Different Material Thickness in Adhesively Bonded Joints Subjected to Fully Reversed Bending Fatigue Load. Theor. Appl. Fract. Mech. 2021, 114, 102984. DOI: 10.1016/j.tafmec.2021.102984.
  • Ribeiro, T. E. A.; Campilho, R.; da Silva, L. F. M.; Goglio, L. Damage Analysis of Composite–aluminium Adhesively-bonded Single-lap Joints. Compos. Struct. 2016, 136, 25–33. DOI: 10.1016/j.compstruct.2015.09.054.
  • Kusaka, T.; Hojo, M.; Mai, Y. W.; Kurokawa, T.; Nojima, T.; Ochiai, S. Rate Dependence of Mode I Fracture Behaviour in Carbon-fibre/epoxy Composite Laminates. Compos. Sci. Technol. 1998, 58(3–4), 591–602. DOI: 10.1016/S0266-3538(97)00176-0.
  • Chaves, F. J. P.; Da Silvab, L. F. M.; De Moura, M. F. S. F.; Dillard, D. A.; Esteves, V. H. C. Fracture Mechanics Tests in Adhesively Bonded Joints: A Literature Review. J. Adhes. 2014, 90(12), 955–992. DOI: 10.1080/00218464.2013.859075.
  • Huang, Y.; Wang, W.; Liu, C.; Rosakis, A. J. Analysis of Intersonic Crack Growth in Unidirectional Fiber-reinforced Composites. J. Mech. Phys. Solids. 1999, 47(9), 1893–1916. DOI: 10.1016/S0022-5096(98)00124-0.
  • ASTM. Standard, D5528, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-reinforced Polymer Matrix Composites 1; ASTM International: West Conshohocken, PA, 2007.
  • Mostovoy, S.; Ripling, E. J.; Bersch, C. F. Fracture Toughness of Adhesive Joints. J. Adhes. 1971, 3(2), 125–144. DOI: 10.1080/00218467108081159.
  • Azari, S.; Papini, M.; Spelt, J. K. Effect of Adhesive Thickness on Fatigue and Fracture of Toughened Epoxy Joints – Part I: Experiments. Eng. Fract. Mech. 2011, 78(1), 153–162. DOI: 10.1016/j.engfracmech.2010.06.025.
  • Cooper, V.; Ivankovic, A.; Karac, A.; McAuliffe, D.; Murphy, N. Effects of Bond Gap Thickness on the Fracture of Nano-toughened Epoxy Adhesive Joints. Polymer. 2012, 53(24), 5540–5553. DOI: 10.1016/j.polymer.2012.09.049.
  • He, X. A Review of Finite Element Analysis of Adhesively Bonded Joints. Int. J. Adhes. Adhes. 2011, 31(4), 248–264. DOI: 10.1016/j.ijadhadh.2011.01.006.
  • Barenblatt, G. I. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Adv. Appl. Mech. 1962, 7, 55–129.
  • Dugdale, D. S. Yielding of Steel Sheets Containing Slits. J. Mech. Phys. Solids. 1960, 8(2), 100–104. DOI: 10.1016/0022-5096(60)90013-2.
  • Loureiro, A. L.; da Silva, L. F. M.; Sato, C.; Figueiredo, M. A. V. Comparison of the Mechanical Behavior between Stiff and Flexible Adhesive Joints for the Automotive Industry. J. Adhes. 2010, 86(7), 765–787. DOI: 10.1080/00218464.2010.482440.
  • Ridha, M.; Tan, V. B. C.; Tay, T. E. Traction–separation Laws for Progressive Failure of Bonded Scarf Repair of Composite Panel. Compos. Struct. 2011, 93(4), 1239–1245. DOI: 10.1016/j.compstruct.2010.10.015.
  • Campilho, R. D. S. G.; Banea, M. D.; Pinto, A. M. G.; da Silva, L. F. M.; De Jesus, A. M. P. Strength Prediction of Single- and Double-lap Joints by Standard and Extended Finite Element Modelling. Int. J. Adhes. Adhes. 2011, 31(5), 363–372. DOI: 10.1016/j.ijadhadh.2010.09.008.
  • Campilho, R. D. S. G.; Banea, M. D.; Neto, J. A. B. P.; da Silva, L. F. M. Modelling Adhesive Joints with Cohesive Zone Models: Effect of the Cohesive Law Shape of the Adhesive Layer. Int. J. Adhes. Adhes. 2013, 44, 48–56. DOI: 10.1016/j.ijadhadh.2013.02.006.
  • Banea, M. D.; da Silva, L. F. M.; Campilho, R. D. S. G. Effect of Temperature on Tensile Strength and Mode I Fracture Toughness of a High Temperature Epoxy Adhesive. J. Adhes. Sci. Technol. 2012, 26(7), 939–953. DOI: 10.1163/156856111X593649.
  • LaPlante, G.; Lee-Sullivan, P. Moisture Effects on FM300 Structural Film Adhesive: Stress Relaxation, Fracture Toughness, and Dynamic Mechanical Analysis. J. Appl. Polym. Sci. 2005, 95(5), 1285–1294. DOI: 10.1002/app.21353.
  • Katnam, K.; Sargent, J.; Crocombe, A.; Khoramishad, H.; Ashcroft, I. Characterisation of Moisture-dependent Cohesive Zone Properties for Adhesively Bonded Joints. Eng. Fract. Mech. 2010, 77(16), 3105–3119. DOI: 10.1016/j.engfracmech.2010.08.023.
  • Stazi, F.; Giampaoli, M.; Rossi, M.; Munafò, P. Environmental Ageing on GFRP Pultruded Joints: Comparison between Different Adhesives. Compos. Struct. 2015, 133, 404–414. DOI: 10.1016/j.compstruct.2015.07.067.
  • Goglio, L.; Peroni, L.; Peroni, M.; Rossetto, M. High Strain-rate Compression and Tension Behaviour of an Epoxy Bi-component Adhesive. Int. J. Adhes. Adhes. 2008, 28(7), 329–339. DOI: 10.1016/j.ijadhadh.2007.08.004.
  • Al-Zubaidy, H. A.; Zhao, X. L.; Al-Mahaidi, R. Mechanical Characterisation of the Dynamic Tensile Properties of CFRP Sheet and Adhesive at Medium Strain Rates. Compos. Struct. 2013, 96, 153–164. DOI: 10.1016/j.compstruct.2012.09.032.
  • Al-Zubaidy, H. A.; Zhao, X. L.; Al-Mahaidi, R. Experimental Evaluation of the Dynamic Bond Strength between CFRP Sheets and Steel under Direct Tensile Loads. Int. J. Adhes. Adhes. 2013, 40, 89–102. DOI: 10.1016/j.ijadhadh.2012.08.001.
  • Iwamoto, T.; Nagai, T.; Sawa, T. Experimental and Computational Investigations on Strain Rate Sensitivity and Deformation Behavior of Bulk Materials Made of Epoxy Resin Structural Adhesive. Int. J. Solids Struct. 2010, 47(2), 175–185. DOI: 10.1016/j.ijsolstr.2009.09.026.
  • Carlberger, T.; Biel, A.; Stigh, U. Influence of Temperature and Strain Rate on Cohesive Properties of a Structural Epoxy Adhesive. Int. J. Fract. 2009, 155(2), 155–166. DOI: 10.1007/s10704-009-9337-4.
  • Cho, J. U.; Kinloch, A.; Blackman, B.; Rodriguez Zsanchez, F. S.; Han, M. S. High-strain-rate Fracture of Adhesively Bonded Composite Joints in DCB and TDCB Specimens. Int. J. Auto. Technol. 2012, 13(7), 1127–1131. DOI: 10.1007/s12239-012-0115-3.
  • May, M.; Hesebeck, O.; Marzi, S.; Boehme, W.; Lienhard, J.; Kilchert, S.; Brede, M. Hiermaier, S. Rate Dependent Behavior of Crash-optimized adhesives–Experimental Characterization, Model Development, and Simulation. Eng. Frac. Mech. 2015, 133, 112–137. DOI: 10.1016/j.engfracmech.2014.11.006.
  • Blackman, B.; Dear, J. P.; Kinloch, A. J.; Macgillivray, H.; Wang, Y.; Williams, J. G.; Yayla, P. The Failure of Fibre Composites and Adhesively Bonded Fibre Composites under High Rates of Test. J. Mater. Sci. 1995, 30(23), 5885–5900. DOI: 10.1007/BF01151502.
  • Sun, C.; Thouless, M. D.; Waas, A. M.; Schroeder, J. A.; Zavattieri, P. D. Ductile–brittle Transitions in the Fracture of Plastically-deforming, Adhesively-bonded Structures. Part I: Experimental Studies. Int. J. Solids Struct. 2008, 45(10), 3059–3073. DOI: 10.1016/j.ijsolstr.2008.01.011.
  • Blackman, B.; Kinloch, A. J.; Rodriguez-Sanchez, F. S.; Teo, W. S. The Fracture Behaviour of Adhesively-bonded Composite Joints: Effects of Rate of Test and Mode of Loading. Int. J. Solids Struct. 2012, 49(13), 1434–1452. DOI: 10.1016/j.ijsolstr.2012.02.022.
  • Blackman, B.; Kinloch, A. J.; Rodriguez-Sanchez, F. S.; Teo, W. S.; Williams, J. G. The Fracture Behaviour of Structural Adhesives under High Rates of Testing. Eng. Frac. Mech. 2009, 76(18), 2868–2889. DOI: 10.1016/j.engfracmech.2009.07.013.
  • Feng, W.; Xu, F.; Xie, W.; Zang, Y. Y.; Zhang, X. Y. Hygrothermal Aging Effects on the Mechanical Behavior of Scarf-repaired Composite Laminates. J. Adhes. 2020, 96(14), 1233–1257. DOI: 10.1080/00218464.2019.1589457.
  • Nie, H. L.; Suo, T.; Wu, B. B.; Li, Y. L.; Zhao, H. A Versatile Split Hopkinson Pressure Bar Using Electromagnetic Loading. Int. J. Impact. Eng. 2018, 116, 94–104.
  • Jih, C. J.; Sun, C. T. Evaluation of a Finite Element Based Crack-closure Method for Calculating Static and Dynamic Strain Energy Release Rates. Eng. Frac. Mech. 1990, 37(2), 313–322. DOI: 10.1016/0013-7944(90)90043-G.
  • Kravchenko, O. G.; Kravchenko, S. G.; Sun, C. T. Thickness Dependence of Mode I Interlaminar Fracture Toughness in a Carbon Fiber Thermosetting Composite. Compos. Struct. 2017, 160, 538–546. DOI: 10.1016/j.compstruct.2016.10.088.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.