161
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improvement of UV-curable ink adhesion onto melamine faced board using dual silane treatments

, , , , &
Pages 1123-1141 | Received 08 Nov 2021, Accepted 18 May 2022, Published online: 01 Jun 2022

References

  • Martin, V. T.; Zeng, L.; Nzengue, J. C.; Mao, L.; Huang, J.; Peng, X. Luxury Melamine Kitchen Cabinet Home Used Wood Veneer Furniture. Ann. Med. Surg 2018, 36, 96. DOI: 10.1016/j.amsu.2018.10.017.
  • Souza, A. J.; Jeremias, T. D.; Gonzalez, A. R.; Amorim, H. J. Assessment of melamine-coated MDF Surface Finish after Peripheral Milling under Different Cutting Conditions. Eur. J. Wood Wood Prod. 2019, 77(4), 559–568. DOI: 10.1007/s00107-019-01413-y.
  • Nosáľ, E.; Reinprecht, L. Anti-bacterial and anti-mold Efficiency of ZnO Nanoparticles Present in melamine-laminated Surfaces of Particleboards. BioResources. 2017, 12(4), 7255–7267.
  • Santos, J.; Pereira, J.; Paiva, N.; Ferra, J.; Magalhães, F. D.; Martins, J. M.; de Carvalho, L. H. Impact of Condensation Degree of melamine-formaldehyde Resins on Their Curing Behavior and on the Final Properties of high-pressure Laminates. Proc. Inst. Mech. Eng. Part C. 2021, 235(3), 484–496. DOI: 10.1177/0954406220940338.
  • Badila, M.; Dolezel-Horwath, E.; Zikulnig-Rusch, E. M.; Schmidt, T.; Kandelbauer, A. Evaluation of the Compatibility between Low Pressure Melamine (LPM) Film Printing Substrates and Inkjet Inks. Eur. J. Wood Wood Prod. 2012, 70(5), 639–649. DOI: 10.1007/s00107-012-0601-3.
  • Rawat, R. S.; Chouhan, N.; Talwar, M.; Diwan, R. K.; Tyagi, A. K. UV Coatings for Wooden Surfaces. Prog. Org. Coat. 2019, 135, 490–495. DOI: 10.1016/j.porgcoat.2019.06.051.
  • Chang, C.-J.; Lin, Y.-H.; Tsai, H.-Y. Synthesis and Properties of UV-curable Hyperbranched Polymers for ink-jet Printing of Color Micropatterns on Glass. Thin Solid Films. 2011, 519(15), 5243–5248. DOI: 10.1016/j.tsf.2011.01.168.
  • Guo, X. D.; Zhou, H. Y.; Wang, J. X. A Novel thioxanthone-hydroxyalkylphenone Bifunctional Photoinitiator: Synthesis, Characterization and Mechanism of Photopolymerization. Prog. Org. Coat. 2021, 154, 106214. DOI: 10.1016/j.porgcoat.2021.106214.
  • Sun, G.; Huang, Y.; Ma, J.; Li, D.; Fan, Q.; Li, Y.; Shao, J. Photoinitiation Mechanisms and Photogelation Kinetics of Blue Light Induced Polymerization of Acrylamide with Bicomponent Photoinitiators. J. Polym. Sci. 2021, 59(7), 567–577. DOI: 10.1002/pol.20200818.
  • C. International Agency for Research On, IARC Classifies Formaldehyde as Carcinogenic to Humans, Press Release (2004) 15.
  • Feng, X.; Wu, Z.; Sang, R.; Wang, F.; Zhu, Y.; Wu, M. Surface Design of wood-based Board to Imitate Wood Texture Using 3D Printing Technology. Bioresources. 2019, 14(4), 8196–8211.
  • Scotton, R. S.; Guerrini, L. M.; Oliveira, M. P. Evaluation of solvent-based and UV-curing Inkjet Inks on the Adhesion and Printing Quality of Different Aircraft Surfaces Coating. Prog. Org. Coat. 2021, 158, 106389. DOI: 10.1016/j.porgcoat.2021.106389.
  • Chagas, G. R.; Weibel, D. E. UV-induced Switchable Wettability between Superhydrophobic and Superhydrophilic Polypropylene Surfaces with an Improvement of Adhesion Properties. Polym. Bull. 2017, 74(6), 1965–1978. DOI: 10.1007/s00289-016-1817-x.
  • Cheng, J.; Huang, J.; Zhu, G.; Yu, X.; Cheng, J.; Liu, Z.; Hu, Y.; Shang, Q.; Liu, C.; Hu, L. Self-healing, Recyclable, and Shape Memory UV-curable Coatings Derived from Tung Oil and Malic Acid. Green Chem. 2021, 23, 2907–2912. DOI: 10.1039/D1GC00098E.
  • Sivakumar, P.; Du, S. M.; Selter, M.; Daye, J.; Cho, J. Improved Adhesion of polyurethane-based Nanocomposite Coatings to Tin Surface through Silane Coupling Agents. Int. J. Adhes. Adhes. 2021, 110, 102948. DOI: 10.1016/j.ijadhadh.2021.102948.
  • Scotland, K. M.; Shetranjiwalla, S.; Vreugdenhil, A. J. Curable Hybrid Materials for Corrosion Protection of Steel: Development and Application of UV-cured 3-methacryloxypropyltrimethoxysilane-derived Coating. J. Coat. Technol. Res. 2020, 17(4), 977–989.
  • Xie, Y.; Hill, C. A. S.; Xiao, Z.; Militz, H.; Mai, C. Silane Coupling Agents Used for Natural fiber/polymer Composites: A Review. Compos. A. 2010, 41(7), 806–819. DOI: 10.1016/j.compositesa.2010.03.005.
  • Yan, H.; Yuanhao, W.; Hongxing, Y. TEOS/silane Coupling Agent Composed Double Layers Structure: A Novel super-hydrophilic Coating with Controllable Water Contact Angle Value. Appl. Energy. 2017, 185, 2209–2216. DOI: 10.1016/j.apenergy.2015.09.097.
  • Maleki, H.; Montes, S.; Hayati-Roodbari, N.; Putz, F.; Huesing, N. Compressible, Thermally Insulating, and Fire Retardant Aerogels through self-assembling Silk Fibroin Biopolymers inside a Silica structure—an Approach Towards 3D Printing of Aerogels. ACS Appl. Mater. Interfaces. 2018, 10(26), 22718–22730. DOI: 10.1021/acsami.8b05856.
  • Miller, A. C.; Berg, J. C. Effect of Silane Coupling Agent Adsorbate Structure on Adhesion Performance with a Polymeric Matrix. Compos. A. 2003, 34(4), 327–332. DOI: 10.1016/S1359-835X(03)00051-4.
  • Hu, J.; Li, F.; Wang, B.; Zhang, H.; Ji, C.; Wang, S.; Zhou, Z. A two-step Combination Strategy for Significantly Enhancing the Interfacial Adhesion of CF/PPS Composites: The liquid-phase Oxidation Followed by Grafting of Silane Coupling Agent. Compos. Part B. 2020, 191, 107966. DOI: 10.1016/j.compositesb.2020.107966.
  • Peng, C.; Chen, P.; You, Z.; Lv, S.; Zhang, R.; Xu, F.; Zhang, H.; Chen, H. Effect of Silane Coupling Agent on Improving the Adhesive Properties between Asphalt Binder and Aggregates. Constr. Build. Mater. 2018, 169, 591–600. DOI: 10.1016/j.conbuildmat.2018.02.186.
  • Gonzalez, B.; da Silva, T. H.; Ciuffi, K. J.; Vicente, M. A.; Trujillano, R.; Rives, V.; de Faria, E. H.; Korili, S. A.; Gil, A. Laponite Functionalized with Biuret and melamine–Application to Adsorption of Antibiotic Trimethoprim. Microporous Mesoporous Mater. 2017, 253, 112–122. DOI: 10.1016/j.micromeso.2017.06.047.
  • Liu, W.; Hu, C.; Zhang, W.; Liu, Z.; Shu, J.; Gu, J. Modification of Birch Wood Surface with Silane Coupling Agents for Adhesion Improvement of UV-curable Ink. Prog. Org. Coat. 2020, 148, 105833. DOI: 10.1016/j.porgcoat.2020.105833.
  • Gao, Y.; Liu, S.; Wang, Q.; Wang, G. Preparation of melamine–formaldehyde Resin Grafted by (3‐aminopropyl) Triethoxysilane for High‐performance Hydrophobic Materials. J. Appl. Polym. Sci. 2020, 137(19), 48664. DOI: 10.1002/app.48664.
  • Wang, X.; Han, Z.; Liu, Y.; Wang, Q. Micro-nano Surface Structure Construction and Hydrophobic Modification to Prepare Efficient oil-water Separation Melamine Formaldehyde Foam. Appl. Surf. Sci. 2020, 505, 144577. DOI: 10.1016/j.apsusc.2019.144577.
  • Dashairya, L.; Sahu, A.; Saha, P. Stearic Acid Treated polypyrrole-encapsulated Melamine Formaldehyde Superhydrophobic Sponge for Oil Recovery. Adv. Compos. Hybrid Mater. 2019, 2(1), 70–82. DOI: 10.1007/s42114-019-00084-w.
  • Deng, Z.; Wen, P.; Wang, N.; Peng, B. Preparation of Hierarchical Superhydrophobic melamine-formaldehyde/Ag Nanocomposite Arrays as surface-enhanced Raman Scattering Substrates for Ultrasensitive and Reproducible Detection of Biomolecules. Sens. Actuators, B. 2019, 288, 20–26. DOI: 10.1016/j.snb.2019.02.068.
  • Zhang, W.; Zhai, X.; Xiang, T.; Zhou, M.; Zang, D.; Gao, Z.; Wang, C. Superhydrophobic Melamine Sponge with Excellent Surface Selectivity and Fire Retardancy for Oil Absorption. J. Mater. Sci. 2017, 52(1), 73–85. DOI: 10.1007/s10853-016-0235-7.
  • Zhu, H.; Yang, S.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. A Robust Absorbent Material Based on Light‐responsive Superhydrophobic Melamine Sponge for Oil Recovery. Adv. Mater. Interfaces. 2016, 3(5), 1500683. DOI: 10.1002/admi.201500683.
  • Guo, J.; Guo, N.; Du, Z.; Zhang, C.; Zou, W. Functionalization of Melamine Foam Surface and Its non-halogen flame-retardant Silicone Materials. New J. Chem. 2021, 45(26), 11705–11711. DOI: 10.1039/D0NJ06219G.
  • Demirel, G. B.; Aygül, E. Robust and Flexible superhydrophobic/superoleophilic Melamine Sponges for oil-water Separation. Colloids Surf., A. 2019, 577, 613–621. DOI: 10.1016/j.colsurfa.2019.05.081.
  • ISO 4287: 1997. Surface Texture: Profile method—Terms, Definitions and Surface Texture Parameters; International Organization for Standardization: Geneva, Switzerland, 1997.
  • ISO EN 4624 (2002).“Paints and varnishes-Pull-off Test for Adhesion,”. International Organization for Standardization 2002.
  • ISO 2409:2020. Paints and varnishes-Cross-cuttest; ISO: Geneva, Switzerland, 2020.
  • ASTM D. 4060-14. Standard Test Method for Abrasion Resistance of Organic Coatings by the Taber Abraser; ASTM International: West Conshohocken, PA, 2014.
  • ASTM D 5946-2009. Standard Test Method for Coronatreated Polymer Films Using Water Contact Angle Measurements (Copyright ASTM International); ASTM International: West Conshohocken, PA, 2009.
  • Kim, M. T. Deposition Behavior of Hexamethydisiloxane Films Based on the FTIR Analysis of Si–O–Si and Si–CH3 Bonds. Thin Solid Films. 1997, 311(1–2), 157–163. DOI: 10.1016/S0040-6090(97)00683-4.
  • Ge, J.; Wang, F.; Yin, X.; Yu, J.; Ding, B. Polybenzoxazine-functionalized Melamine Sponges with Enhanced Selective Capillarity for Efficient Oil Spill Cleanup. ACS Appl. Mater. Interfaces. 2018, 10(46), 40274–40285. DOI: 10.1021/acsami.8b14052.
  • Gupta, S.; He, W.-D.; Tai, N.-H. A Comparative Study on Superhydrophobic Sponges and Their Application as Fluid Channel for Continuous Separation of Oils and Organic Solvents from Water. Compos. Part B. 2016, 101, 99–106. DOI: 10.1016/j.compositesb.2016.06.002.
  • Pipattanawarothai, A.; Suksai, C.; Srisook, K.; Trakulsujaritchok, T. Non-cytotoxic Hybrid Bioscaffolds of chitosan-silica: Sol-gel Synthesis, Characterization and Proposed Application. Carbohydr. Polym. 2017, 178, 190–199. DOI: 10.1016/j.carbpol.2017.09.047.
  • Chung, C.-H.; Liu, W.-C.; Hong, J.-L. Superhydrophobic Melamine Sponge Modified by cross-linked Urea Network as Recyclable Oil Absorbent Materials. Ind. Eng. Chem. Res. 2018, 57(25), 8449–8459. DOI: 10.1021/acs.iecr.8b01595.
  • Wang, J.; Wang, H.; Geng, G. Highly Efficient oil-in-water Emulsion and Oil layer/water Mixture Separation Based on Durably Superhydrophobic Sponge Prepared via a Facile Route. Mar. Pollut. Bull. 2018, 127, 108–116. DOI: 10.1016/j.marpolbul.2017.11.060.
  • Wan, Z.; Liu, Y.; Chen, S.; Song, K.; Peng, Y.; Zhao, N.; Ouyang, X.; Wang, X. Facile Fabrication of a Highly Durable and Flexible MoS2@ RTV Sponge for Efficient oil-water Separation. Colloids Surf., A. 2018, 546, 237–243. DOI: 10.1016/j.colsurfa.2018.03.017.
  • Zhang, K.; Li, T.; Zhang, T.; Wang, C.; Wang, C.; Wu, M. Adhesion Improvement of UV-curable Ink Using Silane Coupling Agent onto Glass Substrate. J. Adhes. Sci. Technol. 2013, 27(13), 1499–1510. DOI: 10.1080/01694243.2012.746159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.