352
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation of the effects of adhesive defects on the strength and creep behavior of single-lap adhesive joints at various temperatures

, &
Pages 1227-1243 | Received 07 Dec 2021, Accepted 20 Jun 2022, Published online: 03 Jul 2022

References

  • Carbas, R. J. C.; Da Silva, L. F. M.; fvAndrés, L. F. S. Functionally Graded Adhesive Joints by Graded Mixing of Nanoparticles. Int. J. Adhes. Adhes. 2017, 76, 30–37. DOI: 10.1016/j.ijadhadh.2017.02.004.
  • Zehsaz, M.; Vakili-Tahami, F.; Saeimi-Sadigh, M.-A. Parametric Study of the Creep Failure of Double Lap Adhesively Bonded Joints. Mater. Des. 2014, 64, 520–526. DOI: 10.1016/j.matdes.2014.08.003.
  • Handbook of Adhesion Technology; da Silva, L. F. M.; Öchsner, A.; Adams, R. D., Eds. Springer: Heidelberg, 2011; Vol. 1.
  • Budhe, S.; Banea, M. D.; De Barros, S.; Da Silva, L. F. M. An Updated Review of Adhesively Bonded Joints in Composite Materials. Int. J. Adhes. Adhes. 2017, 72, 30–42. DOI: 10.1016/j.ijadhadh.2016.10.010.
  • Khoramishad, H.; Sadat Ashofteh, R. Influence of multi-walled Carbon Nanotubes on Creep Behavior of Adhesively Bonded Joints Subjected to Elevated Temperatures. J. Adhes. 2018. DOI: 10.1080/00218464.2018.1451333.
  • Sadigh, M. A. S.; Paygozar, B.; da Silva, L. F. M.; Vakili Tahami, F. Creep Deformation Simulation of Adhesively Bonded Joints at Different Temperature Levels Using a Modified power-law Model. Polym. Test. 2019, 79, 106087. DOI: 10.1016/j.polymertesting.2019.106087.
  • Machado, J. J. M.; Nunes, P. D. P.; Marques, E. A. S.; da Silva, L. F. M. Adhesive Joints Using Aluminium and CFRP Substrates Tested at Low and High Temperatures under quasi-static and Impact Conditions for the Automotive Industry. Compos. B Eng. 2019, 158, 102–116. DOI: 10.1016/j.compositesb.2018.09.067.
  • Emara, M.; Torres, L.; Baena, M.; Barris, C.; Moawad, M. Effect of Sustained Loading and Environmental Conditions on the Creep Behavior of an Epoxy Adhesive for Concrete Structures Strengthened with CFRP Laminates. Compos. B Eng. 2017, 129, 88–96. DOI: 10.1016/j.compositesb.2017.07.026.
  • Rahmani, A.; Choupani, N. Experimental and Numerical Analysis of Fracture Parameters of Adhesively Bonded Joints at Low Temperatures. Eng. Fract. Mech. 2019, 207, 222–236. DOI: 10.1016/j.engfracmech.2018.12.031.
  • Ramalho, L. D. C.; Campilho, R. D. S. G.; Belinha, J.; da Silva, L. F. M. Static Strength Prediction of Adhesive Joints: A Review. Int. J. Adhes. Adhes. 2020, 96, 102451. DOI: 10.1016/j.ijadhadh.2019.102451.
  • Emara, M.; Torres, L.; Baena, M.; Barris, C.; Moawad, M. Effect of Sustained Loading and Environmental Conditions on the Creep Behavior of an Epoxy Adhesive for Concrete Structures Strengthened with CFRP Laminates. Compos. B Eng. 2017, 129, 88–96. DOI: 10.1016/j.compositesb.2017.07.026.
  • Nuwayer, H. M.; Singh Dhaliwal, G.; Newaz, G. M. Time-dependent Behavior of Adhesively Bonded composite–composite Beams under Flexural Loading. J. Adhes. Sci. Technol. 2020, 34(12), 1348–1370. DOI: 10.1080/01694243.2019.1707584.
  • Marques, E. A. S.; Carbas, R. J. C.; Silva, F.; da Silva, L. F. M.; de Paiva, D. P. S.; Magalhães, F. D. Use of Master Curves Based on time-temperature Superposition to Predict Creep Failure of aluminum-glass Adhesive Joints. Int. J. Adhes. Adhes. 2017, 74, 144–154. DOI: 10.1016/j.ijadhadh.2016.12.007.
  • Reza, A.; Shishesaz, M.; Naderan-Tahan, K. The Effect of Viscoelasticity on Creep Behavior of double-lap Adhesively Bonded Joints. Latin Am. J. Solids Struct. 2014, 11, 35–50. DOI: 10.1590/S1679-78252014000100003.
  • Majda, P.; Skrodzewicz, J. A Modified Creep Model of Epoxy Adhesive at Ambient Temperature. Int. J. Adhes. Adhes. 2009, 29(4), 396–404. DOI: 10.1016/j.ijadhadh.2008.07.010.
  • Khabazaghdam, A.; Behjat, B.; Yazdani, M.; Da Silva, L. F. M.; Marques, E. A. S.; Shang, X. Creep Behavior of a graphene-reinforced Epoxy Adhesively Bonded Joints: Experimental and Numerical Investigation. J. Adhes. 2020, 1–22. DOI: 10.1080/00218464.2020.1742114.
  • Khabaz-Aghdam, A.; Behjat, B.; da Silva, L. F. M.; Marques, E. A. S. A New Theoretical Creep Model of an epoxy-graphene Composite Based on the Experimental Investigation: Effect of Graphene Content. J. Compos. Mater. 2020, 0021998319895806. DOI: 10.1177/0021998319895806.
  • Sam-Daliri, O.; Farahani, M.; Faller, L.-M.; Zangl, H. Structural Health Monitoring of Defective Single Lap Adhesive Joints Using Graphene Nanoplatelets. J. Manuf. Processes. 2020, 55, 119–130. DOI: 10.1016/j.jmapro.2020.03.063.
  • Ramalho, L. D. C.; Campilho, R. D. S. G.; Belinha, J. Single Lap Joint Strength Prediction Using the Radial Point Interpolation Method and the Critical Longitudinal Strain Criterion. Engineering Analysis with Boundary Elements. 2020, 113, 268–276. DOI: 10.1016/j.enganabound.2020.01.010.
  • Shaikh, S.; Anekar, N.; Kanase, P.; Patil, A.; Tarate, S. Single Lap Adhesive Joint (SLAJ): A Study. International Journal of Engineering & Technology. 2017, 7, 64–70.
  • Daei-Sorkhabi, A. H.; Farhad Hosseinzadeh-Nodehi, S. Numerical Study of the Effect of Carbon fiber/epoxy Resin Adhesive Thickness on the Creep Behavior of Carbon Steel Plate Joints. J. Adhes. Sci. Technol. 2019, 33, 1790–1805. DOI: 10.1080/01694243.2019.1613946.
  • Tutunchi, A.; Kamali, R.; Kianvash, A. Adhesive Strength of steel–epoxy Composite Joints Bonded with Structural Acrylic Adhesives Filled with Silica Nanoparticles. J. Adhes. Sci. Technol. 2015, 29, 195–206. DOI: 10.1080/01694243.2014.981469.
  • Razavi, S. M. J.; Ayatollahi, M. R.; Nemati Giv, A.; Khoramishad, H. Single Lap Joints Bonded with Structural Adhesives Reinforced with a Mixture of Silica Nanoparticles and multi-walled Carbon Nanotubes. Int. J. Adhes. Adhes. 2018, 80, 76–86. DOI: 10.1016/j.ijadhadh.2017.10.007.
  • May, M.; Wang, H. M.; Akid, R. Effects of the Addition of Inorganic Nanoparticles on the Adhesive Strength of a Hybrid sol–gel Epoxy System. Int. J. Adhes. Adhes. 2010, 30(6), 505–512. DOI: 10.1016/j.ijadhadh.2010.05.002.
  • Borghei, R.; Hamid, B. B.; Yazdani, M. The Impact of Graphene Nanoparticle Additives on the Strength of Simple and Hybrid Adhesively Bonded Joints. J. Compos. Mater. 2019, 53(23), 3335–3346. DOI: 10.1177/0021998318817588.
  • Khalili, S. M. R.; Jafarkarimi, M. H.; Abdollahi, M. A. Creep Analysis of fiber-reinforced Adhesives in Single Lap joints—Experimental Study. Int. J. Adhes. Adhes. 2009, 29, 656–661. DOI: 10.1016/j.ijadhadh.2009.02.007.
  • Ashofteh, R. S.; Khoramishad, H. Creep Behavior of Polymeric Adhesive Joints Exposed to Different Environmental Conditions. Polym. Compos. 2020, 41, 3218–3226. DOI: 10.1002/pc.25613.
  • Sadigh, M. A. S.; Paygozar, B.; Silva, L. F. M.; Tahami, F. V. Creep Deformation Simulation of Adhesively Bonded Joints at Different Temperature Levels Using a Modified power-law Model. Polym. Test. 2019, 79, 106087. DOI: 10.1016/j.polymertesting.2019.106087.
  • Heidarpour, F.; Farahani, M.; Ghabezi, P. Experimental Investigation of the Effects of Adhesive Defects on the Single Lap Joint Strength. Int. J. Adhes. Adhes. 2018, 80, 128–132. DOI: 10.1016/j.ijadhadh.2017.08.005.
  • Nezhad, H. Y.; Stratakis, D.; Ayre, D.; Addepalli, S.; Zhao, Y. Mechanical Performance of Composite Bonded Joints in the Presence of Localized process-induced zero-thickness Defects. Procedia Manuf. 2018, 16, 91–98. DOI: 10.1016/j.promfg.2018.10.175.
  • Jairaja, R.; Naik, G. N. Numerical Studies on Weak Bond Effects in Single and Dual adhesive-bonded Single Lap Joint between CFRP and Aluminum. Materials Today: Proceedings. 2020, 21, 1064–1068. DOI: 10.1016/j.matpr.2020.01.006
  • Fame, C. M.; Correia, J. R.; Ghafoori, E.; Wu, C. Damage Tolerance of Adhesively Bonded Pultruded GFRP double-strap Joints. Compos. Struct. 2021, 263, 113625. DOI: 10.1016/j.compstruct.2021.113625.
  • Lertora, E.; Campanella, D.; Pizzorni, M.; Mandolfino, C.; Buffa, G.; Fratini, L. Comparative Evaluation of the Effect of the Substrate Thickness and Inherent Process Defects on the Static and Fatigue Performance of FSW and adhesive-bonded overlap-joints in an AA6016 Alloy. J. Manuf. Processes. 2021, 64, 785–792. DOI: 10.1016/j.jmapro.2021.01.043.
  • ASM International Handbook Committee. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International, 1992; Vol. 2, pp 1143–1144.
  • ASTM D2651-90. Standard Guide for the Preparation of Metal Surfaces for Adhesive Bonding, 1990.
  • ASTM D 1780. Standard Practice for Conducting Creep Tests of Metal-to-MetalAdhesives. 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.