232
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Cure-induced stress build-up in adhesives: model building and parameter studies

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1456-1487 | Received 08 Jul 2022, Accepted 28 Aug 2022, Published online: 06 Sep 2022

References

  • Takahashi, A.; Sekiguchi, Y.; Sato, C. Volume Change and Viscoelastic Properties of UV-curable Adhesives for Precise Positioning during Curing Process and Their Formulation. J. Adhes. 2021, 1–16. DOI: 10.1080/00218464.2021.1950538.
  • Brauner, C.; Frerich, T.; Herrmann, A. S. Cure-dependent Thermomechanical Modelling of the Stress Relaxation Behaviour of Composite Materials during Manufacturing. J. Compos. Mater. 2017, 51, 877–898. DOI: 10.1177/0021998316656924.
  • Hahn, O.; Jendrny, J. Evaluation of Simulation Models for the Estimation of Deformation of Adhesively Bonded Steel Sheets during Curing. Weld World. 2003, 47, 31–38. DOI: 10.1007/BF03266392.
  • Parlevliet, P. P.; Bersee, H. E.; Beukers, A. Residual Stresses in Thermoplastic Composites – A Study of the Literature. Part III: Effects of Thermal Residual Stresses. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1581–1596. DOI: 10.1016/j.compositesa.2006.12.005.
  • Yu, H.; Adams, R. D.; da Silva, L. F. Development of a Dilatometer and Measurement of the Shrinkage Behaviour of Adhesives during Cure. Int. J. Adhes. Adhes. 2013, 47, 26–34. DOI: 10.1016/j.ijadhadh.2013.09.005.
  • Minty, R. F.; Thomason, J. L.; Yang, L.; Stanley, W.; Roy, A. Development and Application of Novel Technique for Characterising the Cure Shrinkage of Epoxy Resins. Polym. Test. 2019, 73, 316–326. DOI: 10.1016/j.polymertesting.2018.11.045.
  • Haider, M.; Hubert, P.; Lessard, L. Cure Shrinkage Characterization and Modeling of a Polyester Resin Containing Low Profile Additives. Compos. Part A Appl. Sci. Manuf. 2007, 38, 994–1009. DOI: 10.1016/j.compositesa.2006.06.020.
  • Abou Msallem, Y.; Jacquemin, F.; Boyard, N.; Poitou, A.; Delaunay, D.; Chatel, S. Material Characterization and Residual Stresses Simulation during the Manufacturing Process of Epoxy Matrix Composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 108–115. DOI: 10.1016/j.compositesa.2009.09.025.
  • Shah, D. U.; Schubel, P. J. Evaluation of Cure Shrinkage Measurement Techniques for Thermosetting Resins. Polym. Test. 2010, 29, 629–639. DOI: 10.1016/j.polymertesting.2010.05.001.
  • Khoun, L.; Centea, T.; Hubert, P. Characterization Methodology of Thermoset Resins for the Processing of Composite Materials — Case Study: CYCOM 890RTM Epoxy Resin. J. Compos. Mater. 2010, 44, 1397–1415. DOI: 10.1177/0021998309353960.
  • Khoun, L.; Hubert, P. Cure Shrinkage Characterization of an Epoxy Resin System by Two in Situ Measurement Methods. Polym. Compos. 2010, 31, 1603–1610. DOI: 10.1002/pc.20949.
  • Wirries, J.; Mayer, B.; Rütters, M. A Novel in Situ Method to Determine Volume Shrinkage of Curing Adhesives. J. Adhes. 2022, 1–26. DOI: 10.1080/00218464.2021.2021078.
  • Min, S.-H.; Ferracane, J.; Lee, I.-B. Effect of Shrinkage Strain, Modulus, and Instrument Compliance on Polymerization Shrinkage Stress of light-cured Composites during the Initial Curing Stage. Dent. Mater. 2010, 26, 1024–1033. DOI: 10.1016/j.dental.2010.07.002.
  • Singer, G.; Sinn, G.; Lichtenegger, H. C.; Veigel, S.; Zecchini, M.; Wan-Wendner, R. Evaluation of in-situ Shrinkage and Expansion Properties of Polymer Composite Materials for Adhesive Anchor Systems by a Novel Approach Based on Digital Image Correlation. Polym. Test. 2019, 79, 106035. DOI: 10.1016/j.polymertesting.2019.106035.
  • Nawab, Y.; Shahid, S.; Boyard, N.; Jacquemin, F. Chemical Shrinkage Characterization Techniques for Thermoset Resins and Associated Composites. J. Mater. Sci. 2013, 48, 5387–5409. DOI: 10.1007/s10853-013-7333-6.
  • Yin, X.; Goudriaan, J.; Lantinga, E. A.; Vos, J.; Spiertz, H. J. A Flexible Sigmoid Function of Determinate Growth. Ann. Bot. 2003, 91, 361–371. DOI: 10.1093/aob/mcg029.
  • Kolbe, J.; Wirts-Rütters, M.; Amkreutz, M.; Hoffmann, M.; Nagel, C.; Knaack, R.; Schneider, B. Volumenschrumpf vorhersagen und rechtzeitig einplanen. Adhaes Kleb Dicht. 2009, 53, 38–42. DOI: 10.1007/BF03243884.
  • Amkreutz, M.; Knaack, R.; Kolbe, J.; Nagel, C.; Wirts-Rütters, M. Entwicklung eines Simulationstools zur Vorhersage des Härtungsschrumpfes und Quellverhaltens von Klebstoffen: Abschlussbericht. Final report for the ‘Virtual Material Development’ program under the framework program “Material innovations for industry and society (WING)” of the Bundesminiterium für Bildung und Forschung, reporting period: April 1, 2007 - March 31, 2010. Funding reference: BMBF 03X0502D. Fraunhofer IFAM: Bremen, 2010.
  • Lapique, F.; Redford, K. Curing Effects on Viscosity and Mechanical Properties of a Commercial Epoxy Resin Adhesive. Int. J. Adhes. Adhes. 2002, 22, 337–346. DOI: 10.1016/S0143-7496(02)00013-1.
  • Aronhime, M. T.; Gillham, J. K. Time-temperature-transformation (TTT) Cure Diagram of Thermosetting Polymeric Systems. In Epoxy Resins and Composites; Dušek, K., Dušek, K., Eds.; Springer: Berlin, 1986; pp 83–113.
  • Dumont, V.; Badulescu, C.; Stamoulis, G.; Adrien, J.; Maire, E.; Lefèvre, A.; Thévenet, D. On the Effect of the Curing Cycle on the Creation of Pores in Structural Adhesive Joints by Means of X-ray Microtomography. J. Adhes. 2021, 97, 1073–1106. DOI: 10.1080/00218464.2020.1728257.
  • Zhuang, W.; Shi, H.; Li, M. Curing Effects on Forming and Mechanical Performance of clinch-adhesive Joints of Dissimilar Materials between AA5754 Aluminum Alloy and Q235 Steel. J. Adhes. 2021, 1–33. DOI: 10.1080/00218464.2021.1996238.
  • Davidson, C. L.; Feilzer, A. J. Polymerization Shrinkage and Polymerization Shrinkage Stress in polymer-based Restoratives. J Dent. 1997, 25, 435–440. DOI: 10.1016/S0300-5712(96)00063-2.
  • Flory, P. J. Principles of Polymer Chemistry; Cornell Univ. Press: Ithaca, NY, 1953; print. Vol. 19.
  • O’Brien, D. J.; White, S. R. Cure Kinetics, Gelation, and Glass Transition of a Bisphenol F Epoxide. Polym. Eng. Sci. 2003, 43, 863–874. DOI: 10.1002/pen.10071.
  • Bidstrup, S. A.; Macosko, C. W. Chemorheology Relations for epoxy-amine Crosslinking. J. Polym. Sci. B Polym. Phys. 1990, 28, 691–709. DOI: 10.1002/polb.1990.090280508.
  • Zhu, Z.; Sun, X.; Yuan, H.; Song, C.; Cao, Y.; Li, X. Determination of Gel Time and Gel Point of epoxy-amine Thermosets by in-situ near Infrared Spectroscopy. Polym. Test. 2018, 72, 416–422. DOI: 10.1016/j.polymertesting.2018.11.001.
  • Teixeira, P.; Akhavan‐Safar, A.; Carbas, R. J. C.; da Silva, L. F. M. Influence of the Cure State on Mechanical Properties of an Epoxy‐based Adhesive: Experimental Characterization and Numerical Simulation. Polymers Adv Techs. 2022, 33, 1163–1170. DOI: 10.1002/pat.5589.
  • Mravljak, M.; Šernek, M. The Influence of Curing Temperature on Rheological Properties of Epoxy Adhesives. Drvna Ind. 2011, 62, 19–25. DOI: 10.5552/drind.2011.1042.
  • Reghunadhan Nair, C. P.; Ninan, K. N. Rheological Cure Characterization of phosphazene-triazine Polymers. J. Appl. Polym. Sci. 2003, 88, 908–914. DOI: 10.1002/app.11705.
  • Puentes, J.; Colon Quintana, J. L.; Chaloupka, A.; Rudolph, N.; Osswald, T. A. Moduli Development of Epoxy Adhesives during Cure. Polym. Test. 2019, 77, 105863. DOI: 10.1016/j.polymertesting.2019.04.010.
  • Abali, B. E.; Yardımcı, M. Y.; Zecchini, M.; Daissè, G.; Marchesini, F. H.; de Schutter, G.; Wan-Wendner, R. Experimental Investigation for Modeling the Hardening of Thermosetting Polymers during Curing. Polym. Test. 2021, 102, 107310. DOI: 10.1016/j.polymertesting.2021.107310.
  • Levitsky, M.; Shaffer, B. W. Thermal Stresses in Chemically Hardening Elastic Media with Application to the Molding Process. J. Appl. Mech. 1974, 41, 647–651. DOI: 10.1115/1.3423364.
  • Shaffer, B. W.; Levitsky, M. Thermoelastic Constitutive Equations for Chemically Hardening Materials. J. Appl. Mech. 1974, 41, 652–657. DOI: 10.1115/1.3423365.
  • Tseng, S.-C.; Osswald, T. A. Prediction of Shrinkage and Warpage of Fiber Reinforced Thermoset Composite Parts. J. Reinf. Plast. Compos. 1994, 13, 698–721. DOI: 10.1177/073168449401300803.
  • Saseendran, S.; Wysocki, M.; Varna, J. Cure-state Dependent Viscoelastic Poisson’s Ratio of LY5052 Epoxy Resin. Adv. Manuf. 2017, 3, 92–100. DOI: 10.1080/20550340.2017.1348002.
  • Zobeiry, N.; Forghani, A.; Li, C.; Gordnian, K.; Thorpe, R.; Vaziri, R.; Fernlund, G.; Poursartip, A. Multiscale Characterization and Representation of Composite Materials during Processing. Philos Trans. 2016, 374, 20150278. Series A, Mathematical, physical, and engineering sciences. DOI: 10.1098/rsta.2015.0278.
  • Landgraf, R.; Rudolph, M.; Scherzer, R.; Ihlemann, J. Modelling and Simulation of Adhesive Curing Processes in Bonded Piezo Metal Composites. Comput. Mech. 2014, 54, 547–565. DOI: 10.1007/s00466-014-1005-5.
  • Hossain, M.; Possart, G.; Steinmann, P. A Finite Strain Framework for the Simulation of Polymer Curing. Part II. Viscoelasticity and Shrinkage. Comput. Mech. 2010, 46, 363–375. DOI: 10.1007/s00466-010-0479-z.
  • Agha, A.; Abu-Farha, F.; Alturk, R.; Welters, T.; Romanos, G. Cure History Dependent Viscoelastic Modeling of Adhesively Bonded Joints Using MAT_277 in LS-DYNA®. Conference Paper. 15th International LS-DYNA Users Conference, Bamberg, Germany, 2018.
  • Ausiello, P.; Piva, D.; de Oliveira, A. M.; Borges, A. L. S.; Lanzotti, A.; Zamparini, F.; Epifania, E.; Mendes Tribst, J. P. Effect of Shrinking and No Shrinking Dentine and Enamel Replacing Materials in Posterior Restoration: A 3D-FEA Study. Appl. Sci. 2021, 11, 2215. DOI: 10.3390/app11052215.
  • Hossain, M.; Possart, G.; Steinmann, P. A Finite Strain Framework for the Simulation of Polymer Curing. Part I: Elasticity. Comput. Mech. 2009, 44, 621–630. DOI: 10.1007/s00466-009-0397-0.
  • Wirries, J.; Ruetters, M. Methods for Shrinkage Measurement considering Stress Development of Curing Structural Adhesives. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering - IAA 2022, Carvoeiro, Portugal 2022, 095440702211036. DOI: 10.1177/09544070221103676.
  • Saseendran, S.; Wysocki, M.; Varna, J. Evolution of Viscoelastic Behaviour of a Curing LY5052 Epoxy Resin in the Rubbery State. Adv. Compos. Mater. 2017, 26, 553–567. DOI: 10.1080/09243046.2017.1310076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.