191
Views
5
CrossRef citations to date
0
Altmetric
Research Article

The effect of urea-formaldehyde adhesive modification with propylamine on the properties of manufactured plywood

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1427-1440 | Received 27 Sep 2022, Accepted 05 Oct 2022, Published online: 12 Oct 2022

References

  • Arias, A.; González-García, S.; Feijoo, G.; Moreira, M. T. Environmental benefits of soy-based bio-adhesives as an alternative to formaldehyde-based options. Environmental Science and Pollution Research. 2021, 28, 29781.
  • Réh, R.; Krišťák, Ľ.; Sedliačik, J.; Bekhta, P.; Božiková, M.; Kunecová, D.; Vozárová, V.; Tudor, E. M.; Antov, P.; Savov, V. Utilization of Birch Bark as an Eco-Friendly Filler in Urea-Formaldehyde Adhesives for Plywood Manufacturing. Polymers. 2021, 13(4), 511. DOI: 10.3390/polym13040511.
  • Kawalerczyk, J.; Dziurka, D.; Mirski, R.; Siuda, J. The Reduction of Adhesive Application in Plywood Manufacturing by Using nanocellulose-reinforced urea-formaldehyde Resin. J. Appl. Polym. Sci. 2021, 138(7), 49834. DOI: 10.1002/app.49834.
  • Dunky, M. Urea–formaldehyde (UF) Adhesive Resins for Wood. Int. J. Adhes. Adhes. 1998, 18(2), 95. DOI: 10.1016/S0143-7496(97)00054-7.
  • Liu, M.; Wang, Y.; Wu, Y.; Wan, H. Hydrolysis and Recycling of Urea Formaldehyde Resin Residues. J. Hazard. Mater. 2018, 355, 96. DOI: 10.1016/j.jhazmat.2018.05.019.
  • Gonçalves, C.; Paiva, N. T.; Ferra, J. M.; Martins, J.; Magalhães, F.; Barros-Timmons, A.; Carvalho, L. Utilization and Characterization of Amino Resins for the Production of wood-based Panels with Emphasis on Particleboards (PB) and Medium Density Fibreboards (MDF). A Review. Holzforschung. 2018, 72(8), 653. DOI: 10.1515/hf-2017-0182.
  • Kawalerczyk, J.; Siuda, J.; Dziurka, D.; Mirski, R.; Woźniak, M.; Stuper-Szablewska, K. The Soy Flour as an Extender for Uf and Muf Adhesives in Birch Plywood Production. Wood Res. 2021, 66(6), 1015–1031. DOI: 10.37763/wr.1336-4561/66.6.10151031.
  • Park, B.-D.; Kim, J.-W. Dynamic mechanical analysis of urea–formaldehyde resin adhesives with different formaldehyde‐to‐urea molar ratios. J. Appl. Polym. Sci. 2008, 108, 2045.
  • Shao, J.; Chen, Y.; Dong, L.; Yuan, T.; Zhang, Z.; Zhang, J. Correlation between the Desiccator Method and 1 M³ Climate Chamber Method for Measuring Formaldehyde Emissions from Veneered Particleboard. Processes. 2022, 10(5), 1023. DOI: 10.3390/pr10051023.
  • Antov, P.; Savov, V.; Trichkov, N.; Krišťák, Ľ.; Réh, R.; Papadopoulos, A. N.; Taghiyari, H. R.; Pizzi, A.; Kunecová, D.; Pachikova, M. Properties of High-Density Fiberboard Bonded with Urea–Formaldehyde Resin and Ammonium Lignosulfonate as a Bio-Based Additive. Polymers. 2021, 13(16), 2775. DOI: 10.3390/polym13162775.
  • Jalali, M.; Moghadam, S. R.; Baziar, M.; Hesam, G.; Moradpour, Z.; Zakeri, H. R. Occupational Exposure to Formaldehyde, Lifetime Cancer Probability, and Hazard Quotient in Pathology Lab Employees in Iran: A Quantitative Risk Assessment. Environ. Sci. Pollut. Res. 2021, 28(2), 1878. DOI: 10.1007/s11356-020-10627-0.
  • Reingruber, H.; Pontel, L. B. Formaldehyde Metabolism and Its Impact on Human Health. Curr.Opin.Toxicol. 2018, 9, 28. DOI: 10.1016/j.cotox.2018.07.001.
  • Liu, J.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. A high-response Formaldehyde Sensor Based on Fibrous Ag-ZnO/In2O3 with multi-level Heterojunctions. J. Hazard. Mater. 2021, 413, 125352. DOI: 10.1016/j.jhazmat.2021.125352.
  • Rovira, J.; Roig, N.; Nadal, M.; Schuhmacher, M.; Domingo, J. L. Journal of Environmental Science and Health. J. Macromol. Sci. 2016, 51, 357.
  • Lee, K.; Choi, J.-H.; Lee, S.; Park, H.-J.; Oh, Y.-J.; Kim, G.-B.; Lee, W.-S.; Son, B.-S.; Larcombe, A. Indoor Levels of Volatile Organic Compounds and Formaldehyde from Emission Sources at Elderly Care Centers in Korea. PLoS One. 2018, 13(6), e0197495. DOI: 10.1371/journal.pone.0197495.
  • Salthammer, T. Formaldehyde Sources, Formaldehyde Concentrations and Air Exchange Rates in European Housings. Build. Environ. 2019, 150, 219. DOI: 10.1016/j.buildenv.2018.12.042.
  • Wittmann, O. The Subsequent Dissociation of Formaldehyde from Particle Board. Holz als Roh-und Werkstoff. 1962, 20(6), 221. DOI: 10.1007/BF02616050.
  • Wibowo, E. S.; Lubis, M. A. R.; Park, B.-D.; Kim, J. S.; Causin, V. Converting Crystalline Thermosetting urea–formaldehyde Resins to Amorphous Polymer Using Modified Nanoclay. J. Ind. Eng. Chem. 2020, 87, 78. DOI: 10.1016/j.jiec.2020.03.014.
  • Kristak, L.; Antov, P.; Bekhta, P.; Lubis, M. A. R.; Iswanto, A. H.; Reh, R.; Sedliacik, J.; Savov, V.; Taghiyari, H. R.; Papadopoulos, A. N. Wood Material Science & Engineering; 2022; pp 1. DOI: 10.1080/17480272.2022.2056080.
  • Maurer, A. Post Addition of Amine-Based Compounds to Reduce Formaldehyde Emission in Insulation Products, International Application Published under the Patent Cooperation Treaty (PCT), International Publication Number: WO 2008/124782 A1; World Intellectual Property Organization: Geneva, 2008.
  • Ghani, A.; Bawon, P.; Ashaari, Z.; Wahab, M. W.; Hua, L. S.; Chen, L. W. Addition of propylamine as formaldehyde scavenger for urea formaldehyde-bonded particleboard. Wood Res. 2017, 62, 329–334.
  • Ghani, A.; Ashaari, Z.; Bawon, P.; Lee, S. H. Reducing Formaldehyde Emission of Urea formaldehyde-bonded Particleboard by Addition of Amines as Formaldehyde Scavenger. Build. Environ. 2018, 142, 188. DOI: 10.1016/j.buildenv.2018.06.020.
  • Boran, S.; Usta, M.; Gümüşkaya, E. Decreasing Formaldehyde Emission from Medium Density Fiberboard Panels Produced by Adding Different Amine Compounds to Urea Formaldehyde Resin. Int. J. Adhes. Adhes. 2011, 31(7), 674. DOI: 10.1016/j.ijadhadh.2011.06.011.
  • Gonçalves, M.; Paiva, N. T.; Ferra, J. M.; Martins, J.; Magalhães, F. D.; Carvalho, L. Chemical Composition of melamine-urea-formaldehyde (MUF) Resins Assessed by near-infrared (NIR) Spectroscopy. Int. J. Adhes. Adhes. 2019, 93, 102327. DOI: 10.1016/j.ijadhadh.2019.01.021.
  • EN ISO 2555. Plastics — Resins in the Liquid State or as Emulsions or Dispersions — Determination of Apparent Viscosity Using a Single Cylinder Type Rotational Viscometer Method; International Organization for Standardization: Switzerland, 2018.
  • EN 827. Adhesives - Determination of Conventional Solids Content and Constant Mass Solids Content; European Committee for Standardization: Brussels, 2005.
  • PN-C-89352-3. Kleje do drewna - Metody badań - Oznaczanie czasu żelowania; Polish Committee for Standardization: Warsaw, 1996.
  • EN 120. Wood Based Panels - Determination of Formaldehyde Content - Extraction Method Called the Perforator Method; European Committee for Standardization: Brussels, 1994.
  • Dziurka, D.; Mirski, R. Properties of Liquid and Polycondensed UF Resin Modified with pMDI. Drvna Industrija. 2014, 65(2), 115–119.
  • EN 314–1. Plywood. Bonding Quality. Test Methods; European Committee for Standardization: Brussels, 2004.
  • EN 310. Wood-based Panels. Determination of Modulus of Elasticity in Bending and of Bending Strength; European Committee for Standardization: Brussels, 1993.
  • American National Standard for Hardwood and Decorative Plywood. American National Standards Institute; Hardwood Plywood and Veneer Association: Reston, VA, 2004.
  • Damodaran, S.; Zhu, D. A Formaldehyde-Free Water-Resistant Soy Flour-Based Adhesive for Plywood. J. Am. Oil Chem. Soc. 2016, 93(9), 1311. DOI: 10.1007/s11746-016-2866-x.
  • Mousavi, S. Y.; Huang, J.; Li, K. Investigation of Poly (Glycidyl methacrylate-co-styrene) as a Curing Agent for soy-based Wood Adhesives. Int. J. Adhes. Adhes. 2018, 82, 67. DOI: 10.1016/j.ijadhadh.2017.12.017.
  • EN 717-3. Wood-based Panels - Determination of Formaldehyde Release - Part 3: Formaldehyde Release by the Flask Method; European Committee for Standardization: Brussels, 1996.
  • Atar, İ.; Nemli, G.; Ayrilmis, N.; Baharoğlu, M.; Sarı, B.; Bardak, S. Effects of Hardener Type, Urea Usage and Conditioning Period on the Quality Properties of Particleboard. Mater. Des. 2014, 56, 91. DOI: 10.1016/j.matdes.2013.10.078.
  • Johns, W. E.; Niazi, K. A. Effect of pH and buffering capacity of wood on the gelation time of urea-formaldehyde resin. Wood and Fiber Science. 1981, 4, 255–263.
  • Xing, C.; Zhang, S. Y.; Deng, J.; Wang, S. Urea–formaldehyde-resin Gel Time as Affected by the pH Value, Solid Content, and Catalyst. J. Appl. Polym. Sci. 2007, 103(3), 1566. DOI: 10.1002/app.25343.
  • Ghahri, S.; Mohebby, B.; Pizzi, A.; Mirshokraie, A.; Mansouri, H. R. Improving Water Resistance of Soy-Based Adhesive by Vegetable Tannin. J. Polym. Environ. 2018, 26(5), 1881. DOI: 10.1007/s10924-017-1090-6.
  • Wang, W. H.; Li, X. P.; Zhang, X. Q. A soy‐based adhesive from basic modification. Pigment & Resin Technology. 2008, 37(2), 93–97. DOI: 10.1108/03699420810860446.
  • Su, J.-F.; Huang, Z.; Yuan, X.-Y.; Wang, X.-Y.; Li, M. Structure and Properties of Carboxymethyl cellulose/soy Protein Isolate Blend Edible Films Crosslinked by Maillard Reactions. Carbohydr. Polym. 2010, 79(1), 145. DOI: 10.1016/j.carbpol.2009.07.035.
  • Zhang, X.; Zhu, Y.; Yu, Y.; Song, J. Improve Performance of Soy Flour-Based Adhesive with a Lignin-Based Resin. Polymers. 2017, 9(12), 261. DOI: 10.3390/polym9070261.
  • Kovacic, J. The CN Stretching Frequency in the Infrared Spectra of Schiff’s Base complexes—I. Copper Complexes of Salicylidene Anilines. Spectrochim.Acta A Mol.Spectrosc. 1967, 23(1), 183. DOI: 10.1016/0584-8539(67)80219-8.
  • Ma, J.; Wang, M.; Du, Z.; Chen, C.; Gao, J.; Xu, J. Synthesis and Properties of furan-based imine-linked Porous Organic Frameworks. Polym. Chem. 2012, 3(9), 2346. DOI: 10.1039/c2py20367g.
  • Hassannejad, H.; Shalbafan, A.; Rahmaninia, M. Reduction of formaldehyde emission from medium density fiberboard by chitosan as scavenger. J. Adhes. 2018. DOI: 10.1080/00218464.2018.1515631.
  • Park, B.-D.; Jeong, H.-W. Effects of Acid Hydrolysis on Microstructure of Cured urea-formaldehyde Resins Using Atomic Force Microscopy. J. Appl. Polym. Sci. 2011, 122(5), 3255. DOI: 10.1002/app.34387.
  • EN 314-2. Plywood - Bonding Quality - Part 2: Requirements; European Committee for Standardization: Brussels, 1993.
  • Pedieu, R.; Riedl, B.; Pichette, A. Messung der Acidität von Holzspänen und Rindenpartikeln sowie deren Einfluss auf die Aushärtung von Harnstoffformaldehydharz beim Heißpressen von Spanplatten. Holz als Roh-und Werkstoff. 2008, 66(2), 113. DOI: 10.1007/s00107-007-0212-6.
  • Ebewele, R. O.; Myers, G. E.; River, B. H.; Koutsky, J. A. Polyamine-modified urea-formaldehyde Resins. I. Synthesis, Structure, and Properties. J. Appl. Polym. Sci. 1991, 42(11), 2997. DOI: 10.1002/app.1991.070421118.
  • Costa, N. A.; Pereira, J.; Ferra, J.; Cruz, P.; Martins, J.; Magalhães, F. D.; Mendes, A.; Carvalho, L. H. Scavengers for Achieving Zero Formaldehyde Emission of wood-based Panels. Wood Sci. Technol. 2013, 47(6), 1261. DOI: 10.1007/s00226-013-0573-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.