280
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Effect of cure temperature on the mechanical properties of epoxy-aluminium single lap joints

, &
Pages 1441-1455 | Received 20 May 2022, Accepted 05 Aug 2022, Published online: 21 Oct 2022

References

  • Banea, M. D.; da Silva, L. F. M.; Campilho, R. D. S. G.; de Jesus, A. M. P. Characterization of Aluminium Single-Lap Joints for High Temperature Applications, Mater. Sci. Forum. 2013, 730–732, 721–726.
  • Loureiro, A. L.; da Silva, L. F. M.; Sato, C.; Figueiredo, M. A. V. Comparison of the Mechanical Behaviour between Stiff and Flexible Adhesive Joints for the Automotive Industry. J. Adhes. 2010, 86(7), 765–787. DOI: 10.1080/00218464.2010.482440.
  • Reis, P. N. B.; Antunes, F. J. V.; Ferreira, J. A. M. Influence of Superposition Length on Mechanical Resistance of single-lap Adhesive Joints. Compos. Struct. 2005, 67(1), 125–133. DOI: 10.1016/j.compstruct.2004.01.018.
  • da Silva, L. F. M.; Critchlow, G. W.; Figueiredo, M. A. V. Parametric Study of Adhesively Bonded Single Lap Joints by the Taguchi Method. J. Adhes. Sci. Technol. 2008, 22(13), 1477–1494. DOI: 10.1163/156856108X309585.
  • Sawa, T.; Liu, J.; Nakano, K.; Tanaka, J. A two-dimensional Stress Analysis of single-lap Adhesive Joints of Dissimilar Adherends Subjected to Tensile Loads. J. Adhes. Sci. Technol. 2000, 14(1), 43–66. DOI: 10.1163/156856100742104.
  • Liu, J.; Sawa, T.; Toratani, H. A Two-dimensional Stress Analysis and Strength of Single-lap Adhesive Joints of Dissimilar Adherends Subjected to External Bending Moments. J. Adhes. 1999, 69(3–4), 263–291. DOI: 10.1080/00218469908017231.
  • Vinson, J. R. Adhesive bonding of polymer composites. Polym. Eng. Sci. 1989, 29, 1325–1331. DOI: 10.1002/pen.760291904.
  • Lees, W. A. Stress distribution in bonded joints: an exploration within a mathematical model. Int. J. Mater. Prod. Technol. 1987, 2, 168–181. DOI: 10.1504/IJMPT.1987.036769.
  • Czarnocki, P.; Piekarski, K. Non-linear Numerical Stress Analysis of a Symmetric adhesive-bonded Lap Joint. Int. J. Adhes. Adhes. 1986, 6(3), 157–160. DOI: 10.1016/0143-7496(86)90020-5.
  • da Silva, L. F. M.; Carbas, R. J. C.; Critchlow, G. W.; Figueiredo, M. A. V.; Brownc, K. Effect of Material, Geometry, Surface Treatment and Environment on the Shear Strength of Single Lap Joints. Int. J. Adhes. Adhes. 2009, 29(6), 621–632. DOI: 10.1016/j.ijadhadh.2009.02.012.
  • da Silva, L. F. M.; Critchlow, G. W.; Figueiredo, M. A. V. Parametric Study of Adhesively Bonded Single Lap Joints by the Taguchi Method. J. Adhes. Sci. Technol. 2008, 22(1), 1477–1494. DOI: 10.1163/156856108X309585.
  • Hattori, T. JSME. Int. J. A. Sol. M. 1991, 34, 326–331.
  • Czarnocki, P.; Piekarski, K. Fracture Strength of an adhesive-bonded Joint. Int. J. Adhes. Adhes. 1986, 6(2), 93–95. DOI: 10.1016/0143-7496(86)90055-2.
  • Mazumdar, S. K.; Mallick, P. K. Static and Fatigue Behavior of Adhesive Joints in SMC-SMC Composites. Polym. Compos. 1998, 19(2), 139–146. DOI: 10.1002/pc.10084.
  • Hildebrand, M. Non-linear Analysis and Optimization of Adhesively Bonded Single Lap Joints between fibre-reinforced Plastics and Metals. Int. J. Adhes. Adhes. 1994, 14(4), 261–267. DOI: 10.1016/0143-7496(94)90039-6.
  • Adams, R. D.; Harris, J. A. The Influence of Local Geometry on the Strength of Adhesive Joints. Int. J. Adhes. Adhes. 1987, 7(2), 69–80. DOI: 10.1016/0143-7496(87)90092-3.
  • Groth, H. L. Stress Singularities and Fracture at Interface Corners in Bonded Joints. Int. J. Adhes. 1988, 8(2), 107–113. DOI: 10.1016/0143-7496(88)90031-0.
  • Wang, C. H.; Rose, L. R. F. Compact Solutions for the Corner Singularity in Bonded Lap Joints. Int. J. Adhes. Adhes. 2000, 20(2), 145–154. DOI: 10.1016/S0143-7496(99)00032-9.
  • Papini, M.; Fernlund, G.; Spelt, J. K. The Effect of Geometry on the Fracture of Adhesive Joints. Int. J. Adhes. Adhes. 1994, 14(1), 5–13. DOI: 10.1016/0143-7496(94)90015-9.
  • Amijima, S.; Fujii, T. A Simple Stress Analysis Method for Adhesive Bonded Tapered Joints. Int. J. Adhes. Adhes. 1989, 9(3), 155–160. DOI: 10.1016/0143-7496(89)90111-5.
  • Groth, H. L.; Nordlund, P. Shape Optimization of Bonded Joints. Int. J. Adhes. Adhes. 1991, 11(4), 204–212. DOI: 10.1016/0143-7496(91)90002-Y.
  • Lang, T. P.; Mallick, P. K. Effect of spew geometry on stresses in single lap adhesive joints. Int. J. Adhes. Adhes. 1998, 18, 167–177. DOI: 10.1016/S0143-7496(97)00056-0.
  • Reis, P. N. B.; Ferreira, J. A. M.; Antunes, F. Effect of Adherend’s Rigidity on the Shear Strength of Single Lap Adhesive Joints. Int. J. Adhes. Adhes. 2011, 31(4), 193–201. DOI: 10.1016/j.ijadhadh.2010.12.003.
  • Solmaz, Y. M.; Turgut, A. An Experimental and Numerical Study on the Effects of Taper Angles and Overlap Length on the Failure and Stress Distribution of Adhesively-Bonded Single-Lap Joints. Math. Comput. Appl. 2011, 16, 159–170. DOI: 10.3390/mca16010159.
  • Bezine, B.; Roy, A.; Vinet, A. Stress in bonded adherends for single lap joints. J. Sh. Prod. 1996, 12, 167–171. DOI: 10.5957/jsp.1996.12.3.167.
  • Oterkus, E.; Barut, A.; Madenci, E.; Smeltzer, S. S.; Ambur, D. R. Bonded Lap Joints of Composite Laminates with Tapered Edges. Int. J. Solids Struct. 2006, 43(6), 1459–1489. DOI: 10.1016/j.ijsolstr.2005.07.035.
  • Amaro, A. M.; Neto, M. A.; Loureiro, A.; Reis, P. N. B. Taper’s Angle Influence on the Structural Integrity of single-lap Bonded Joints. Theor. Appl. Fract. Mech. 2018, 96, 231–246. DOI: 10.1016/j.tafmec.2018.05.006.
  • Vallée, T.; Tannert, T.; Murcia-Delso, J.; Quinn, D. J. Influence of stress-reduction Methods on the Strength of Adhesively Bonded Joints Composed of Orthotropic Brittle Adherends. Int. J. Adhes. Adhes. 2010, 30(7), 583–594. DOI: 10.1016/j.ijadhadh.2010.05.007.
  • da Silva, L. F. M.; Lopes, M. J. C. Q. Joint Strength Optimization by the mixed-adhesive Technique. Int. J. Adhes. Adhes. 2009, 29(5), 509–514. DOI: 10.1016/j.ijadhadh.2008.09.009.
  • Campilho, R. D. S. G.; Pinto, A. M. G.; Banea, M. D.; Silva, R. F.; da Silva, L. F. M. Strength Improvement of Adhesively-Bonded Joints Using a Reverse-Bent Geometry. J. Adhes. Sci. Technol. 2011, 25(18), 2351–2368. DOI: 10.1163/016942411X580081.
  • Zhao, X.; Adams, R. D.; da Silva, L. F. M. Single Lap Joints with Rounded Adherend Corners: Experimental Results and Strength Prediction. J. Adhes. Sci. Technol. 2011, 25(8), 837–856. DOI: 10.1163/016942410X520880.
  • Marques, E. A. S.; da Silva, L. F. M.; Flaviani, M. Testing and simulation of mixed adhesive joints for aerospace applications. Compos. Part B-Eng. 2015, 74, 123–130. DOI: 10.1016/j.compositesb.2015.01.005.
  • Machado, J. J. M.; Marques, E. A. S.; da Silva, L. F. M. Influence of Low and High Temperature on Mixed Adhesive Joints under quasi-static and Impact Conditions. Compos. Struct. 2018, 194, 68–79. DOI: 10.1016/j.compstruct.2018.03.093.
  • Sancaktar, E.; Kumar, S. Selective Use of Rubber Toughening to Optimize lap-joint Strength. J. Adhes. Sci. Technol. 2000, 14(10), 1265–1296. DOI: 10.1163/156856100742195.
  • Stapleton, S. E.; Waas, A. M.; Arnold, S. M. Functionally Graded Adhesives for Composite Joints. Int. J. Adhes. Adhes. 2012, 35, 36–49. DOI: 10.1016/j.ijadhadh.2011.11.010.
  • Carbas, R. J. C.; da Silva, L. F. M.; Critchlow, G. W. Adhesively Bonded Functionally Graded Joints by Induction Heating. Int. J. Adhes. Adhes. 2014, 48, 110–118. DOI: 10.1016/j.ijadhadh.2013.09.045.
  • Carbas, R. J. C.; Marques, E. A. S.; da Silva, L. F. M.; Lopes, A. M. Effect of Cure Temperature on the Glass Transition Temperature and Mechanical Properties of Epoxy Adhesives. J. Adhes. 2014, 90(1), 104–119. DOI: 10.1080/00218464.2013.779559.
  • Carbas, R. J. C.; da Silva, L. F. M.; Marques, E. A. S.; Lopes, A. M. Effect of post-cure on the Glass Transition Temperature and Mechanical Properties of Epoxy Adhesives. J. Adhes. Sci. Technol. 2013, 27(23), 2542–2557. DOI: 10.1080/01694243.2013.790294.
  • Kaynak, C.; Ankara, A. Eng. Fract. Mech. 1992, 53, 169–718.
  • Negru, R.; Marsavina, L.; Hluscu, M. Experimental and Numerical Investigations on Adhesively Bonded Joints. IOP Conf. Ser. Mater. Sci. Eng. 2016, 123, 012012. DOI: 10.1088/1757-899X/123/1/012012.
  • Mitchell, A. J.; The optimisation of stress transfer characteristics in adhesively bonded vehicular armour by modification of the adhesive phase and by engineering the adhesive-to-metal and adhesive-to-composite interphases. Ph.D. Dissertation, Loughborough University, Loughborough U.K., 2016.
  • Hirulkar, N. S.; Jaiswal, P. R.; Reis, P. N. B.; Ferreira, J. A. M. Effect of Hygrothermal Aging and Cyclic Thermal Shocks on the Mechanical Performance of single-lap Adhesive Joints. Int. J. Adhes. Adhes. 2020, 99, 102584. DOI: 10.1016/j.ijadhadh.2020.102584.
  • Hirulkar, N. S.; Jaiswal, P. R.; Reis, P. N. B.; Ferreira, J. A. M. Bending Strength of single-lap Adhesive Joints under Hygrothermal Aging Combined with Cyclic Thermal Shocks. J. Adhes. 2021, 97(5), 493–507. DOI: 10.1080/00218464.2019.1681981.
  • da Silva, L. F. M.; Neves, P. J. C.; Adams, R. D.; Wang, A.; Spelt, J. K. Analytical Models of Adhesively Bonded joints—Part II: Comparative Study. Int. J. Adhes. Adhes. 2009, 29(3), 331–341. DOI: 10.1016/j.ijadhadh.2008.06.007.
  • Bordes, M.; Davies, P.; Cognard, J.-Y.; Sohier, L.; Sauvant-Moynot, V.; Galy, J. Prediction of Long Term Strength of Adhesively Bonded steel/epoxy Joints in Sea Water. Int. J. Adhes. Adhes. 2009, 29(6), 595–608. DOI: 10.1016/j.ijadhadh.2009.02.013.
  • Sreekala, M. S.; Kumaran, M. G.; Joseph, R.; Thomas, S. Stress-relaxation Behaviour in Composites Based on Short oil-palm Fibres and Phenol Formaldehyde Resin. Compos. Sci. Technol. 2001, 61(9), 1175–1188. DOI: 10.1016/S0266-3538(00)00214-1.
  • Varghese, S.; Kuriakose, B.; Thomas, S. Stress Relaxation in Short sisal-fiber-reinforced Natural Rubber Composites. J. Appl. Polym. Sci. 1994, 53(8), 1051–1060. DOI: 10.1002/app.1994.070530807.
  • George, J.; Sreekala, M. S.; Thomas, S.; Bhagawan, S. S.; Neelakantan, N. R. Stress Relaxation Behavior of Short Pineapple Fiber Reinforced Polyethylene Composites. J. Rein. Plast. Comp. 1998, 17(7), 651–672. DOI: 10.1177/073168449801700704.
  • Park, B. D.; Balatinecz, J. J. Short Term Flexural Creep Behavior of wood-fiber/polypropylene Composites. Polym. Compos. 1998, 19(4), 377–382. DOI: 10.1002/pc.10111.
  • Houshyar, S.; Shanks, R. A.; Hodzic, A. Tensile Creep Behaviour of Polypropylene Fibre Reinforced Polypropylene Composites. Polym. Test. 2005, 24(2), 257–264. DOI: 10.1016/j.polymertesting.2004.07.003.
  • Bouafif, H.; Koubaa, A.; Perré, P.; Cloutier, A. Creep behaviour of HDPE/wood particle composites. Int. J. Microstruct. Mater. Prop. 2013, 8, 225–238. DOI: 10.1504/IJMMP.2013.055385.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.