235
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Determination of Mode I cohesive law of structural adhesives using the direct method

, , , , &
Pages 1650-1677 | Received 30 Aug 2022, Accepted 22 Nov 2022, Published online: 30 Nov 2022

References

  • Sekiguchi, Y.; Hayashi, A.; Sato, C. Analytical Determination of Adhesive Layer Deformation for Adhesively Bonded Double Cantilever Beam Test considering elastic–plastic Deformation. J. Adhes. 2020, 96(7), 647–664. DOI: 10.1080/00218464.2018.1489799.
  • Ciardiello, R.; Greco, L.; Miranda, M.; Sciullo, F. D.; Goglio, L. Experimental Investigation on Adhesively Bonded U-shaped Metallic Joints Using the Arcan Test. J Adv Joining Processes 2020, 1, 100010. DOI: 10.1016/j.jajp.2020.100010.
  • Costa, M.; Viana, G.; Créac’hcadec, R.; da Silva, L. F. M.; Campilho, R. D. S. G. A Cohesive Zone Element for Mode I Modelling of Adhesives Degraded by Humidity and Fatigue. Int.J.Fatigue. 2018, 112, 173–182. DOI: 10.1016/j.ijfatigue.2018.03.014.
  • Zamani, P.; Jaamialahmadi, A.; da Silva, L. F. M. The Influence of GNP and nano-silica Additives on Fatigue Life and Crack Initiation Phase of Al-GFRP Bonded Lap Joints Subjected to four-point Bending. Composites Part B: Engineering. 2021, 207, 108589. DOI: 10.1016/j.compositesb.2020.108589.
  • Bernasconi, A.; Lima, R. A. A.; Cardamone, S.; Campbell, R. B.; Slocum, A. H.; Giglio, M. Effect of Temperature on Cohesive Modelling of 3M Scotch-Weld ™ 7260 B/A Epoxy Adhesive. J Adhes. 2020, 96(1–4), 437–460. DOI: 10.1080/00218464.2019.1665519.
  • Carvalho, U. T. F.; Campilho, R. D. S. G. Application of the Direct Method for Cohesive Law Estimation Applied to the Strength Prediction of double-lap Joints. Theor Appl Fract Mech. 2016, 85, 140–148. DOI: 10.1016/j.tafmec.2016.08.018.
  • Aalami, M. R.; Chakherlou, T. N. Investigating the Effects of Loading System on the Fracture Behavior of DCB Specimens considering T-stress. Proc Inst Mech Eng, Part L: J Mater: Des Appl 2021, 235(12), 2654–2665.
  • Sadeghi, M. Z.; Zimmermann, J.; Gabener, A.; Schroeder, K. U. The Applicability of J-integral Approach in the Determination of mixed-mode Fracture Energy in a Ductile Adhesive. Int. J. Adhes. Adhes. 2018, 83, 2–8. DOI: 10.1016/j.ijadhadh.2018.02.027.
  • Sun, F.; Blackman, B. R. K. A DIC Method to Determine the Mode I Energy Release Rate G, the J-integral and the traction-separation Law Simultaneously for Adhesive Joints. Eng Fract Mech. 2020, 234, 107097. DOI: 10.1016/j.engfracmech.2020.107097.
  • Goutianos, S.; Sørensen, B. F. The Application of J Integral to Measure Cohesive Laws under large-scale Yielding. Eng. Fract. Mech. 2016, 155, 145–165. DOI: 10.1016/j.engfracmech.2016.01.004.
  • Abdel Monsef, S.; Pérez-Galmés, M.; Renart, J.; Turon, A.; Maimí, P. The Influence of Mode II Test Configuration on the Cohesive Law of Bonded Joints. Compos. Struct. 2020, 234, 111689. DOI: 10.1016/j.compstruct.2019.111689.
  • Rice, J. A Path Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. J. Appl. Mech. 1968, 35(2), 379–386. DOI: 10.1115/1.3601206.
  • Bucci, R. J.; Paris, P. C.; Landes, J. D.; Rice, J. J-integral Estimation Procedures. ASTM Spec Tech Pub. 1972, 40–69.
  • Biel, A.; Stigh, U. Comparison of J-integral Methods to Experimentally Determine Cohesive Laws in Shear for Adhesives. Int. J. Adhes. Adhes. 2019, 94, 64–75. DOI: 10.1016/j.ijadhadh.2019.04.014.
  • Kimpfbeck, D.; Major, Z.; Miron, M.-C. Application of J Integral for the Fracture Assessment of Welded Polymeric Components. In Fracture Mechanics Applications - Chapter 2; IntechOpen, 2019.
  • Sarrado, C.; Turon, A.; Renart, J.; Costa, J. An Experimental Data Reduction Method for the Mixed Mode Bending Test Based on the J-integral Approach. Compos Sci Technol. 2015, 117, 85–91. DOI: 10.1016/j.compscitech.2015.05.021.
  • Chaves, F.; Silva, L. F. M.; De Moura, M.; Dillard, D.; Esteves, V. Fracture Mechanics Tests in Adhesively Bonded Joints: A Literature Review. J. Adhes. 2014, 90(12), 955–992. DOI: 10.1080/00218464.2013.859075.
  • Campilho, R. D. S. G.; Moura, D. C.; Gonçalves, D. J. S.; da Silva, J. F. M. G.; Banea, M. D.; da Silva, L. F. M. Fracture Toughness Determination of Adhesive and co-cured Joints in Natural Fibre Composites. Compos. Part B. 2013, 50, 120–126. DOI: 10.1016/j.compositesb.2013.01.025.
  • Sun, F.; Blackman, B. R. K. Using Digital Image Correlation to Automate the Measurement of Crack Length and Fracture Energy in the Mode I Testing of Structural Adhesive Joints. Eng Fract Mech. 2021, 255, 107957. DOI: 10.1016/j.engfracmech.2021.107957.
  • Pérez-Galmés, M.; Renart, J.; Sarrado, C.; Rodríguez-Bellido, A.; Costa, J. A Data Reduction Method Based on the J -integral to Obtain the Interlaminar Fracture Toughness in A Mode II end-loaded Split (ELS) Test. Composites Part A: Applied Science and Manufacturing. 2016, 90, 670–677. DOI: 10.1016/j.compositesa.2016.08.020.
  • Sørensen, B. F.; Jacobsen, T. K. Determination of Cohesive Laws by the J Integral Approach. Eng. Fract. Mech. 2003, 70(14), 1841–1858. DOI: 10.1016/S0013-7944(03)00127-9.
  • Desai, C.; Basu, S.; Parameswaran, V. Determination of Traction Separation Law for Interfacial Failure in Adhesive Joints at Different Loading Rates. J. Adhes. 2015, 92, 150527102921008.
  • Zhu, Y.; Liechti, K. M.; Ravi-Chandar, K. Direct Extraction of rate-dependent traction–separation Laws for polyurea/steel Interfaces. Int J Solids Struct. 2009, 46(1), 31–51. DOI: 10.1016/j.ijsolstr.2008.08.019.
  • Lélias, G.; Paroissien, E.; Lachaud, F.; Morlier, J. Experimental Characterization of Cohesive Zone Models for Thin Adhesive Layers Loaded in Mode I, Mode II, and mixed-mode I/II by the Use of a Direct Method. Int. J. Solids Struct. 2019, 158, 90–115. DOI: 10.1016/j.ijsolstr.2018.09.005.
  • Stigh, U.; Alfredsson, S.; Biel, A. Measurement of Cohesive Laws and Related Problems. ASME Int Mech Eng Congress Expo 2009, 11.
  • Li, H.; Chandra, N. Analysis of Crack Growth and crack-tip Plasticity in Ductile Materials Using Cohesive Zone Models. Int J Plast. 2003, 19(6), 849–882. DOI: 10.1016/S0749-6419(02)00008-6.
  • Rosendahl, P. L.; Staudt, Y.; Odenbreit, C.; Schneider, J.; Becker, W. Measuring Mode I Fracture Properties of thick-layered Structural Silicone Sealants. Int. J. Adhes. Adhes. 2019, 91, 64–71. DOI: 10.1016/j.ijadhadh.2019.02.012.
  • Yu, J.; Wang, Y.; Li, Z.; Zhang, Q.; Jian, X.; Zhang, Z. Using DIC Technique to Characterize the Mode II Interface Fracture of Layered System Composed of Multiple Materials. Compos Struct. 2019, 230, 111413. DOI: 10.1016/j.compstruct.2019.111413.
  • Jia, Z.; Yuan, G.; Hui, D.; Feng, X.; Zou, Y. Effect of High Strain Rate and Low Temperature on Mode II Fracture Toughness of Ductile Adhesive. Int. J. Adhes. Adhes. 2018, 86, 105–112. DOI: 10.1016/j.ijadhadh.2018.09.003.
  • Arrese, A.; Insausti, N.; Mujika, F.; Perez-Galmés, M.; Renart, J. A Novel Experimental Procedure to Determine the Cohesive Law in ENF Tests. Compos. Sci. Technol. 2019, 170, 42–50. DOI: 10.1016/j.compscitech.2018.11.031.
  • Sørensen, B. F.; Kirkegaard, P. Determination of Mixed Mode Cohesive Laws. Eng Fract Mech. 2006, 73(17), 2642–2661. DOI: 10.1016/j.engfracmech.2006.04.006.
  • Loh, L.; Marzi, S. A Novel Experimental Methodology to Identify Fracture Envelopes and Cohesive Laws in mixed-mode I + III. Eng. Fract. Mech. 2019, 214, 304–319. DOI: 10.1016/j.engfracmech.2019.03.011.
  • Cui, H. Simulation of Ductile Adhesive Failure with Experimentally Determined Cohesive Law. Composites Part B: Eng. 2016, 92, 193–201. DOI: 10.1016/j.compositesb.2016.02.018.
  • Tserpes, K.; Barroso-Caro, A.; Carraro, P. A.; Beber, V. C.; Floros, I.; Gamon, W.; Kozłowski, M.; Santandrea, F.; Shahverdi, M.; Skejić, D.; et al. A Review on Failure Theories and Simulation Models for Adhesive Joints. J. Adhes. 2022, 98(12), 1–61.
  • LFd, S.; Öchsner, A.; Adams, R. D. Handbook of Adhesion Technology; Springer: Berlin, 2018.
  • Gorman, J. M.; Thouless, M. D. The Use of digital-image Correlation to Investigate the Cohesive Zone in a double-cantilever Beam, with Comparisons to Numerical and Analytical Models. J. Mech. Phys. Solids. 2019, 123, 315–331. DOI: 10.1016/j.jmps.2018.08.013.
  • Cricrì, G. Cohesive Law Identification of Adhesive Layers Subject to Shear Load – An Exact Inverse Solution. Int J Solids Struct. 2019, 158, 150–164. DOI: 10.1016/j.ijsolstr.2018.09.001.
  • Abdel Monsef, S.; Ortega, A.; Turon, A.; Maimí, P.; Renart, J. An Efficient Method to Extract a Mode I Cohesive Law for Bonded Joints Using the Double Cantilever Beam Test. Compos. Part B. 2019, 178, 107424. DOI: 10.1016/j.compositesb.2019.107424.
  • Ghabezi, P.; Farahani, M. A Cohesive Model with A multi-stage Softening Behavior to Predict Fracture in Nano Composite Joints. Eng Fract Mech. 2019, 219, 106611. DOI: 10.1016/j.engfracmech.2019.106611.
  • Katsivalis, I.; Thomsen, O. T.; Feih, S.; Achintha, M. Development of Cohesive Zone Models for the Prediction of Damage and Failure of glass/steel Adhesive Joints. Int. J. Adhes. Adhes. 2020, 97, 102479. DOI: 10.1016/j.ijadhadh.2019.102479.
  • Azevedo, J. C. S.; Campilho, R. D. S. G.; da Silva, F. J. G.; Faneco, T. M. S.; Lopes, R. M. Cohesive Law Estimation of Adhesive Joints in Mode II Condition. Theor Appl Fract Mech. 2015, 80, 143–154. DOI: 10.1016/j.tafmec.2015.09.007.
  • Carvalho, U. T. F.; Campilho, R. D. S. G. Validation of Pure Tensile and Shear Cohesive Laws Obtained by the Direct Method with single-lap Joints. Int. J. Adhes. Adhes. 2017, 77, 41–50. DOI: 10.1016/j.ijadhadh.2017.04.002.
  • Carvalho, U. T. F.; Campilho, R. D. S. G. Validation of a Direct Method to Predict the Strength of Adhesively Bonded Joints. Sci Technol Mater. 2018, 30(3), 138–143. DOI: 10.1016/j.stmat.2017.12.002.
  • Sarrado, C.; Turon, A.; Costa, J.; Renart, J. An Experimental Analysis of the Fracture Behavior of Composite Bonded Joints in Terms of Cohesive Laws. Compos. A. 2016, 90, 234–242. DOI: 10.1016/j.compositesa.2016.07.004.
  • Jensen, S. M.; Martos, M. J.; Lindgaard, E.; Bak, B. L. V. Inverse Parameter Identification of n-segmented Multilinear Cohesive Laws Using Parametric Finite Element Modeling. Compos. Struct. 2019, 225, 111074. DOI: 10.1016/j.compstruct.2019.111074.
  • Wu, C.; Huang, R.; Liechti, K. M. Simultaneous Extraction of Tensile and Shear Interactions at Interfaces. J Mech Phys Solids. 2019, 125, 225–254. DOI: 10.1016/j.jmps.2018.12.004.
  • Blaysat, B.; Hoefnagels, J. P. M.; Lubineau, G.; Alfano, M.; Geers, M. G. D. Interface Debonding Characterization by Image Correlation Integrated with Double Cantilever Beam Kinematics. Int. J. Solids Struct. 2015, 55, 79–91. DOI: 10.1016/j.ijsolstr.2014.06.012.
  • Dias, G. F.; de Moura, M. F. S. F.; Chousal, J. A. G.; Xavier, J. Cohesive Laws of Composite Bonded Joints under Mode I Loading. Compos Struct. 2013, 106, 646–652. DOI: 10.1016/j.compstruct.2013.07.027.
  • Sun, F.; Zhang, R.; Blackman, B. R. K. Determination of the Mode I Crack Tip Opening Rate and the Rate Dependent Cohesive Properties for Structural Adhesive Joints Using Digital Image Correlation. Int J Solids Struct. 2021, 217-218, 60–73. DOI: 10.1016/j.ijsolstr.2021.01.034.
  • de Moura, M. F. S. F.; Campilho, R. D. S. G.; Gonçalves, J. P. M. Crack Equivalent Concept Applied to the Fracture Characterization of Bonded Joints under Pure Mode I Loading. Compos Sci Technol. 2008, 68(10), 2224–2230. DOI: 10.1016/j.compscitech.2008.04.003.
  • NF T 76-142. Méthode de préparation de plaques d’adhésifs structuraux pour la réalisation d’éprouvettes d’essai de caractérisation. In. 1988.
  • BS 2782-0:2011. Methods of Testing Plastics. 2011.
  • Nunes, P. D. P.; Marques, E. A. S.; Carbas, R. J. C.; Akhavan-Safar, A.; da Silva, L. F. M. Quasi-static and Intermediate Test Speed Validation of SHPB Specimens for the Determination of Mode I, Mode II Fracture Toughness of Structural Epoxy Adhesives. Eng. Fract. Mech. 2022, 262, 108231. DOI: 10.1016/j.engfracmech.2021.108231.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.