181
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Thermal conductivity and shear strength characterisation of hybrid GNPs and silane functionalised BN as thermal conductive adhesive

ORCID Icon, , &
Pages 1695-1743 | Received 10 May 2022, Accepted 15 Oct 2022, Published online: 22 Dec 2022

References

  • Jägerbrand, A. K. LED (Light-Emitting Diode) Road Lighting in Practice: An Evaluation of Compliance with Regulations and Improvements for Further Energy Savings. Energies. 2016, 9(5), 357. DOI: 10.3390/en9050357.
  • Liao, B.; Maznev, A. A.; Nelson, K. A.; Chen, G. Photo-Excited Charge Carriers Suppress Sub-Terahertz Phonon Mode in Silicon at Room Temperature. Nat. Commun. 2016, 7(1), 1–7. DOI: 10.1038/ncomms13174.
  • Christensen, A.; Graham, S. Thermal Effects in Packaging High Power Light Emitting Diode Arrays. Appl. Therm. Eng. 2009, 29(2–3), 364–371. DOI: 10.1016/j.applthermaleng.2008.03.019.
  • Sivasamy, A.; Selladurai, V.; Rajesh Kanna, P. Mixed Convection on Jet Impingement Cooling of a Constant Heat Flux Horizontal Porous Layer. Int. J. Therm. Sci. 2010, 49(7), 1238–1246. DOI: 10.1016/j.ijthermalsci.2010.01.010.
  • Mauro, A. W.; Thome, J. R.; Toto, D.; Vanoli, G. P. Saturated Critical Heat Flux in A Multi-Microchannel Heat Sink Fed by A Split Flow System. Exp. Therm. Fluid Sci. 2010, 34(1), 81–92. DOI: 10.1016/j.expthermflusci.2009.09.005.
  • Almubarak, A. A. The Effects of Heat on Electronic Components. Int. J. Eng. Res. Appl. 2017, 7, 52–57. DOI: 10.9790/9622-0705055257.
  • Mehoke, D. Spacecraft Thermal Control. In Fundamentals of Space Systems; Pisacane, V. L., Ed.; Oxford University Press: Oxford, 2005; Vol. 2, pp 423–464.
  • Yang, L.; Wei, B.; Zhang, J. Transient Thermal Characterization of Organic Light-Emitting Diodes. Semicond. Sci. Technol. 2012, 27(10), 105011. DOI: 10.1088/0268-1242/27/10/105011.
  • Yu, Y.; Li, X. P.; Ye, X. M.; Hu, J. Effect of Overheating Treatment on Microstructure and Crystal Orientation of TbDyFe Alloy. Mater. Sci. Technol. 2013, 29(6), 697–701. DOI: 10.1179/1743284712Y.0000000202.
  • Yang, W. B.; Mo, S. J.; Lianga, D.; Zhen, F. J. Numerical Study of Overheat Fault in Copper Wire Caused by Bad Contact Base on Multi-Physics Coupling. 7th International Conference on Intelligent Computation Technology and Automation, Changsha, China, Oct 25 – 26, 2014; IEEE, 2014.
  • Dede, E. M.; Lee, J.; Nomura, T. Optimization Methods for Electromechanical Systems. In Multiphysics Simulation: Electromechanical System Applications and Optimisation; Dede, E. M., Lee, J., Nomura, T., Eds. Springer-Verlag: London, 2014; pp 41–59.
  • Gu, J.; Zhang, Q.; Dang, J.; Xie, C. Thermal Conductivity Epoxy Resin Composites Filled with Boron Nitride. Polym. Adv. Technol. 2012, 23(6), 1025–1028. DOI: 10.1002/pat.2063.
  • Idumah, C. I.; Hassan, A. Recently Emerging Trends in Thermal Conductivity of Polymer Nanocomposites. Rev. Chem. Eng. 2016, 32, 413–457. DOI: 10.1515/revce-2016-0004.
  • Singh, A. K.; Panda, B. P.; Mohanty, S.; Nayak, S. K.; Gupta, M. K. Synergistic Effect of Hybrid Graphene and Boron Nitride on the Cure Kinetics and Thermal Conductivity of Epoxy Adhesives. Polym. Adv. Technol. 2017, 28(12), 1851–1864. DOI: 10.1002/pat.4072.
  • Lin, Z.; Liu, Y.; Raghavan, S.; Moon, K. S.; Sitaraman, S. K.; Wong, C. P. Magnetic Alignment of Hexagonal Boron Nitride Platelets in Polymer Matrix: Toward High Performance Anisotropic Polymer Composites for Electronic Encapsulation. ACS Appl. Mater. Interfaces. 2013, 5(15), 7633–7640. DOI: 10.1021/am401939z.
  • Lin, Z.; Mcnamara, A.; Liu, Y.; Sik Moon, K.; Wong, C. P. Exfoliated Hexagonal Boron Nitride-Based Polymer Nanocomposite with Enhanced Thermal Conductivity for Electronic Encapsulation. Compos. Sci. Technol. 2014, 90, 123–128. DOI: 10.1016/j.compscitech.2013.10.018.
  • Stoukatch, S.; Fagnard, J. F.; Dupont, F.; Laurent, P.; Debliquy, M.; Redoute, J. M. Low Thermal Conductivity Adhesive as a Key Enabler for Compact, Low-Cost Packaging for Metal-Oxide Gas Sensors. IEEE Electron. Packag. Soc. Sect. 2022, 10, 19242–19253. DOI: 10.1109/access.2022.3151356.
  • Li, J.; Lumpp, J. K. Carbon Nanotube Filled Conductive Adhesives for Aerospace Applications. In 2007 IEEE Aerospace Conference, Big Sky, MT, USA, March 3–10, 2007; IEEE, 2007.
  • Song, B.;.; Li, J.;.; Wu, F.;.; Patel, S.;.; Hah, J.;.; Wang, X.;.; Moon, K.-S.; Wong, C.-P. Processing and Characterisation of Silver-Filled Conductive Polysulfide Sealants for Aerospace Applications. Soft Matter. 2018, 14(44), 9036–9043. DOI: 10.1039/c8sm02004c.
  • Zhaoxun, Y.; Thermally Conductive Adhesive Transfer Tape in Medical Humidifier Device,” MSc. Dissertation, The University of Auckland, New Zealand, 2018.
  • Duyen Do, N. B.; Andreassen, E.; Imenes, K. Thermal Management with A New Encapsulation Approach for A Medical Device. In 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC), Norway, September 15–18, 2020; IEEE, 2020.
  • Alim, M. A.; Abdullah, M. Z.; Aziz, M. S. A.; Kamarudin, R.; Gunnasegaran, P. Recent Advances on Thermally Conductive Adhesive in Electronic Packaging: A Review. Polymers. 2021, 13(19), 3337. DOI: 10.3390/polym13193337.
  • Mehdi, I. S.; Brockschmidt, A. E.; Karimi, K. J. A Case for High Temperature Electronics for Aerospace. In IMAPS Int’l Conference on High Temperature Electronics (HiTEC), Santa Fe, New Mexico, May 15-18, 2006.
  • Tan, B.; Ji, Y.; Hu, Y.; Yuan, B.; Hu, X.; Huang, Z. Pretreatment Using Diluted Epoxy Adhesive Resin Solution For Improving Bond Strength Between Steel And Wood Surfaces. Int. J. Adhes. Adhes. 2020, 98, 102502. DOI: 10.1016/j.ijadhadh.2019.102502.
  • Chen, C.; Li, B.; Kanari, M.; Lu, D. Epoxy Adhesives. In Adhesives and Adhesive Joints in Industry Applications;; Rudawska, A., Ed.; IntechOpen: London, U.K, 2019; pp 37–50.
  • Ebnesajjad, S.; Landrock, A. H. Adhesives for Special Adherends. Adhes. Technol. Handb. 2015, 160–182. DOI: 10.1016/B978-0-323-35595-7.00006-1.
  • Kumar, R.; Mishra, A.; Sahoo, S.; Panda, B. P.; Mohanty, S.; Nayak, S. K. Epoxy-Based Composite Adhesives: Effect of Hybrid Fillers on Thermal Conductivity, Rheology, and Lap Shear Strength. Polym. Adv. Technol. 2019, 30(6), 1365–1374. DOI: 10.1002/pat.4569.
  • Gibson, G. Epoxy Resins. In Brydson’s Plastics Materials, 8th ed.; Gilbert, M., Ed.; Butterworth-Heinemann: Oxford, 2017; pp 773–797.
  • Li, J.; Liu, M.; Niu, G.; Xiong, Q.; Ma, Y.; An, R.; Bai, W.; Qin, C.; Ren, W. Enhanced Anti-Corrosion Performances of Epoxy Resin Using the Addition of Sodium Dodecylbenzene Sulfonate-Modified Graphene. Coatings. 2021, 11, 655. DOI: 10.3390/coatings11060655.
  • Guo, Y.; Ruan, K.; Shi, X.; Yang, X.; Gu, J. Factors Affecting Thermal Conductivities of the Polymers and Polymer Composites: A Review. Compos. Sci. Technol. 2020, 193, 108134. DOI: 10.1016/j.compscitech.2020.108134.
  • Unnikrishnan, K. P.; Thachil, E. T. Toughening of Epoxy Resins. Des. Monomers Polym. 2006, 9(2), 129–152. DOI: 10.1163/156855506776382664.
  • Messina, E.; Leone, N.; Foti, A.; Di Marco, G.; Riccucci, C.; Di Carlo, G.; Di Maggio, F.; Cassata, A.; Gargano, L.; D’Andrea, C., et al. Double-Wall Nanotubes and Graphene Nanoplatelets for Hybrid Conductive Adhesives with Enhanced Thermal and Electrical Conductivity. ACS Appl. Mater. Interfaces. 2016, 8(35), 23244–23259. DOI: 10.1021/acsami.6b06145.
  • Ekrem, M.; Şahin, Ö. S.; Karabulut, S. E.; Avcı, A. Thermal Stability and Adhesive Strength of Boron Nitride Nano Platelets and Carbon Nano Tube Modified Adhesives. J. Compos. Mater. 2018, 52(11), 1557–1565. DOI: 10.1177/0021998317726147.
  • Kumar, R.; Mohanty, S.; Nayak, S. K. Thermal Conductive Epoxy Adhesive Composites Filled with Carbon-Based Particulate Fillers : A Comparative Study. J. Adhes. Sci. Technol. 2020, 34(8), 807–827. DOI: 10.1080/01694243.2019.1646062.
  • Zheng, H.; Die-Attachment on Copper by Nanosilver Sintering: Processing, Characterization and Reliability. Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, 2015.
  • Manikam, V. R.; Cheong, K. Y. Die Attach Materials for High Temperature Applications: A Review. IEEE Trans. Components, Packag. Manuf. Technol. 2011, 1(4), 457–478. DOI: 10.1109/tcpmt.2010.2100432.
  • Yang, S. Y.; Lin, W. N.; Huang, Y. L.; Tien, H. W.; Wang, J. Y.; Ma, C. C. M.; Li, S. M.; Wang, Y. S. Synergetic Effects of Graphene Platelets and Carbon Nanotubes on the Mechanical and Thermal Properties of Epoxy Composites. Carbon. 2011, 49, 793–803. DOI: 10.1016/j.carbon.2010.10.014.
  • Balandin, A. A.; Nika,; Nika, D. L.; L, D. Phononics in Low-Dimensions: Engineering Phonons in Nanostructures and Graphene. Mater. Today. 2012, 15(6), 266–275. DOI: 10.48550/arxiv.1211.4482.
  • Ibrahim, S.; Ibraheem, S.; Yasin, G.; Kumar, A.; Tabish, M.; Nguyen, T. A. Carbon Nanotubes: General Introduction. In Handbook of Carbon Nanotubes;; Abraham, J., Thomas, S., Kalarikkal, N., Eds.; Springer: Cham, 2022; pp 1–13.
  • Bao, R.; Yan, S.; Qin, Y.; Lu, M. Improving Thermal Conductivity and Shear Strength of Carbon Nanotubes/Epoxy Composites via Thiol-Ene Click Reaction. J. Appl. Polym. Sci. 2017, 134. DOI: 10.1002/app.44579.
  • Stanciu, N. V.; Stan, F.; Sandu, I. L.; Fetecau, C.; Turcanu, A. M.; Rheological, T. Mechanical, and Electrical Properties of Polypropylene/Multi-Walled Carbon Nanotube Nanocomposites. Polym. 2021, 13(2), 187. DOI: 10.3390/polym13020187.
  • Yan, X.; Qiao, L.; Tan, H.; Tan, H.; Liu, C.; Zhu, K.; Lin, Z.; Xu, S. Effect of Carbon Nanotubes on the Mechanical, Crystallization, Electrical and Thermal Conductivity Properties of CNT/CCF/PEKK Composites. Mater. 2022, 15, 4950. DOI: 10.3390/ma15144950.
  • NajiMehr, H.; Shariati, M.; Zamani, P.; da Silva, L. F. M.; Ghahremani Moghadam, D. Investigating on the Influence of Multi-Walled Carbon Nanotube and Graphene Nanoplatelet Additives on Residual Strength of Bonded Joints Subjected to Partial Fatigue Loading. J. Appl. Polym. Sci. 2022, 139(18), 18–21. DOI: 10.1002/app.52069.
  • Han, S.; Meng, Q.; Pan, X.; Liu, T.; Zhang, S.; Wang, Y.; Haridy, S.; Araby, S. Synergistic Effect of Graphene and Carbon Nanotube on Lap Shear Strength and Electrical Conductivity of Epoxy Adhesives. J. Appl. Polym. Sci. 2019, 136(42), 48056. DOI: 10.1002/app.48056.
  • Krause, B.; Pötschke, P.; Häußler, L. Influence of Small Scale Melt Mixing Conditions on Electrical Resistivity of Carbon Nanotube-Polyamide Composites. Compos. Sci. Technol. 2009, 69(10), 1505–1515. DOI: 10.1016/j.compscitech.2008.07.007.
  • Krause, B.; Ritschel, M.; Täschner, C.; Oswald, S.; Gruner, W.; Leonhardt, A.; Pötschke, P. Comparison of Nanotubes Produced by Fixed Bed and Aerosol-CVD Methods and Their Electrical Percolation Behaviour in Melt Mixed Polyamide 6.6 Composites. Compos. Sci. Technol. 2010, 70(1), 151–160. DOI: 10.1016/j.compscitech.2009.09.018.
  • Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8(3), 902–907. DOI: 10.1021/nl0731872.
  • Bhattacharya, M. Polymer Nanocomposites-A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers. Materials. 2016, 9(4), 1–35. DOI: 10.3390/ma9040262.
  • Dhand, V.; Rhee, K. Y.; Ju Kim, H.; Ho Jung, D. A Comprehensive Review of Graphene Nanocomposites: Research Status and Trends. J. Nanomater. 2013, 14, 158. DOI: 10.1155/2013/763953.
  • Aïssa, B.; Memon, N. K.; Ali, A.; Khraisheh, M. K. Recent Progress in the Growth and Applications of Graphene as A Smart Material: A Review. Front. Mater. 2015, 2, 58. DOI: 10.3389/fmats.2015.00058.
  • Arikpo, J. U.; Onuu, M. U. Graphene Growth and Characterization: Advances, Present Challenges and Prospects. J. Mater. Sci. Res. 2019, 8, 37–68. DOI: 10.5539/jmsr.v8n4p37.
  • Li, A.; Zhang, C.; Zhang, Y. F. Thermal Conductivity of Graphene-Polymer Composites: Mechanisms, Properties, and Applications. Polymers. 2017, 9(9), 437. DOI: 10.3390/polym9090437.
  • Ashofteh, R. S.; Khoramishad, H. Investigation of the Creep Behavior of Graphene Oxide Nanoplatelet-Reinforced Adhesively Bonded Joints. J. Adhes. Sci. Technol. 2019, 33(6), 561–578. DOI: 10.1080/01694243.2018.1543635.
  • Khoramishad, H.; Ebrahimijamal, M.; Fasihi, M. The Effect of Graphene Oxide Nano-Platelets on Fracture Behavior of Adhesively Bonded Joint. Fatigue Fract. Eng. Mater. Struct. 2017, 40(11), 1905–1916. DOI: 10.1111/ffe.12612.
  • Ashofteh, R. S.; Khoramishad, H. The Influence of Hygrothermal Ageing on Creep Behavior of Nanocomposite Adhesive Joints Containing Multi-Walled Carbon Nanotubes and Graphene Oxide Nanoplatelets. Int. J. Adhes. Adhes. 2019, 94, 1–12. DOI: 10.1016/j.ijadhadh.2019.03.017.
  • Heydari, A.; Khoramishad, H.; Alikhani, H.; Berto, F. The Effect of Graphene-Oxide Nanoplatelets on the High-Velocity Impact Response of Glass Laminate Aluminum Reinforced Epoxy. physical Mesomechanics. 2021, 24(1), 65–76. DOI: 10.1134/S1029959921010100.
  • Khoramishad, H.; Ashofteh, R. S.; Pourang, H.; Berto, F. Experimental Investigation of the Influence of Temperature on the Reinforcing Effect of Graphene Oxide Nano-Platelet on Nanocomposite Adhesively Bonded Joints. Theor. Appl. Fract. Mech. 2018, 94, 95–100. DOI: 10.1016/j.tafmec.2018.01.010.
  • Prolongo, S. G.; Moriche, R.; Jiménez-Suárez, A.; Sánchez, M.; Ureña, A. Epoxy Adhesives Modified with Graphene for Thermal Interface Materials. J. Adhes. 2014, 90(10), 835–847. DOI: 10.1080/00218464.2014.893510.
  • Zaman, I.; Kuan, H. C.; Meng, Q.; Michelmore, A.; Kawashima, N.; Pitt, T.; Zhang, L.; Gouda, S.; Luong, L.; Ma, J. A. Facile Approach to Chemically Modified Graphene and Its Polymer Nanocomposites. Adv. Funct. Mater. 2012, 22(13), 2735–2743. DOI: 10.1002/adfm.201103041.
  • Shi, G.; Araby, S.; Gibson, C. T.; Meng, Q.; Zhu, S.; Ma, J. Graphene Platelets and Their Polymer Composites: Fabrication, Structure, Properties, and Applications. Adv. Funct. Mater. 2018, 28, 1706705. DOI: 10.1002/adfm.201706705.
  • Rasul, M. G.; Kiziltas, A.; Arfaei, B.; Shahbazian-Yassar, R. 2D Boron Nitride Nanosheets for Polymer Composite Materials. NPJ 2D Mater. Appl. 2021, 5, 1–18. DOI: 10.1038/s41699-021-00231-2.
  • Xue, Y.; Li, X.; Wang, H.; Zhao, F.; Zhang, D.; Chen, Y. Improvement in Thermal Conductivity of Through-Plane Aligned Boron Nitride/Silicone Rubber Composites. Mater. Des. 2019, 165, 107580. DOI: 10.1016/j.matdes.2018.107580.
  • Chen, J.; Huang, X.; Zhu, Y.; Jiang, P. Cellulose Nanofiber Supported 3D Interconnected BN Nanosheets for Epoxy Nanocomposites with Ultrahigh Thermal Management Capability. Adv. Funct. Mater. 2017, 27(5), 1604754. DOI: 10.1002/adfm.201604754.
  • Cai, W.; Wang, B.; Liu, L.; Zhou, X.; Chu, F.; Zhan, J.; Hu, Y.; Kan, Y.; Wang, X. An Operable Platform Towards Functionalization of Chemically Inert Boron Nitride Nanosheets for Flame Retardancy and Toxic Gas Suppression of Thermoplastic Polyurethane. Compos. Part B Eng. 2019, 178, 107462. DOI: 10.1016/j.compositesb.2019.107462.
  • Jesson, D. A.; Watts, J. F. The Interface and Interphase in Polymer Matrix Composites: Effect on Mechanical Properties and Methods for Identification. polymer Reviews. 2012, 52(3), 321–354. DOI: 10.1080/15583724.2012.710288.
  • Wypych, G. Functional Fillers : Chemical Composition, Morphology, Performance, Applications; ChemTec Publishing: Toronto, Canada, 2018.
  • Mehra, N.; Mu, L.; Ji, T.; Zhu, J. Thermal Conduction in Polymer Composites. In Polymer-Based Multifunctional Nanocomposites and Their Applications, 1st ed.; Song, K., Liu, C., Guo, J. Z., Eds.; Elsevier: Amsterdam, 2019; pp 77–110.
  • Zheng, Z.; Cox, M.; Li, B. Surface Modification of Hexagonal Boron Nitride Nanomaterials: A Review. J. Mater. Sci. 2018, 53(1), 66–99. DOI: 10.1007/s10853-017-1472-0.
  • Öner, M.; Kızıl, G.; Keskin, G.; Pochat-Bohatier, C.; Bechelany, M. The Effect of Boron Nitride on the Thermal and Mechanical Properties of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate). Nanomaterials. 2018, 8(11), 1–20. DOI: 10.3390/nano8110940.
  • Yu, Y.-H.; Ma, C.-C. M.; Teng, -C.-C.; Huang, Y.-L.; Tien, H.-W.; Lee, S.-H.; Wang, I. Enhanced Thermal and Mechanical Properties of Epoxy Composites Filled with Silver Nanowires and Nanoparticles. Journal of the Taiwan institute of Chemical Engineers. 2013, 44(4), 654–659. DOI: 10.1016/j.jtice.2013.01.001.
  • Weng, L.; Wang, H.; Zhang, X.; Liu, L.; Zhang, H. Improved Thermal Conductivities of Epoxy Resins Containing Surface Functionalized BN Nanosheets. Nano. 2018, 13(11), 1–9. DOI: 10.1142/S1793292018501333.
  • Daneshmehr, S.; Román, F.; Hutchinson, J. M. The Surface Modification of Boron Nitride Particles. J. Therm. Anal. Calorim. 2019, 143(1), 151–163. DOI: 10.1007/S10973-019-09160-1.
  • Hou, J.; Li, G.; Yang, N.; Qin, L.; Grami, M. E.; Zhang, Q.; Wang, N.; Qu, X. Preparation and Characterization of Surface Modified Boron Nitride Epoxy Composites with Enhanced Thermal Conductivity. RSC Adv. 2014, 4(83), 44282–44290. DOI: 10.1039/c4ra07394k.
  • Chung, S. L.; Lin, J. S. Thermal Conductivity of Epoxy Resin Composites Filled with Combustion Synthesized h-BN Particles. Molecules. 2016, 21(670). 10.3390/molecules21050670.
  • Wattanakul, K.; Manuspiya, H.; Yanumet, N. Effective Surface Treatments for Enhancing the Thermal Conductivity of BN-Filled Epoxy Composite. J. Appl. Polym. Sci. 2011, 119(6), 3234–3243. DOI: 10.1002/app.32889.
  • Wang, Z.; Fu, Y.; Meng, W.; Zhi, C. Solvent-Free Fabrication of Thermally Conductive Insulating Epoxy Composites with Boron Nitride Nanoplatelets as Fillers. Nanoscale Res. Lett. 2014, 9(1), 1–7. DOI: 10.1186/1556-276x-9-643/figures/8.
  • Palakattukunnel, S. T.; Thomas, S.; Sreekumar, P. A.; Bandyopadhyay, S. Poly(Ethylene-Co-Vinyl Acetate)/Calcium Phosphate Nanocomposites: Contact Angle, Diffusion and Gas Permeability Studies. J. Polym. Res. 2011, 18(6), 1277–1285. DOI: 10.1007/S10965-010-9530-1.
  • Sato, T.; Araki, S.; Morimoto, M.; Tanaka, R.; Yamamoto, H. Comparison of Hansen Solubility Parameter of Asphaltenes Extracted from Bitumen Produced in Different Geographical Regions. Energy. Fuels. 2014, 28(2), 891–897. DOI: 10.1021/ef402065j.
  • Fedors, R. F. A Method for Estimating Both the Solubility Parameters and Molar Volumes of Liquids. Polym. Eng. Sci. 1974, 14(2), 147–154. DOI: 10.1002/pen.760140211.
  • Van Krevelen, D. W.; Te Nijenhuis, K. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions; Elsevier: Amsterdam, The Netherlands, 2009.
  • Hoy, K. L. The Hoy: Tables of Solubility Parameters, Union Carbide Solvents and Coatings Materials Division, South Charleston: South Charleston, WV, 1984.
  • Stefanis, E.; Panayiotou, C. Prediction of Hansen Solubility Parameters with a New Group-Contribution Method. Int. J. Thermophys. 2008, 29(2), 568–585. DOI: 10.1007/S10765-008-0415-Z.
  • Araya, K.; Iwasaki, K. Solubility Parameters of Liquid Crystals. Mol. Cryst. Liq. Cryst. 2002, 392(1), 49–57. DOI: 10.1080/10587250216179.
  • Jasmee, S.; Omar, G.; Othaman, S. S. C.; Masripan, N. A.; Hamid, H. A. Interface Thermal Resistance and Thermal Conductivity of Polymer Composites at Different Types, Shapes, and Sizes of Fillers: A Review. Polym. Compos. 2021, 1–24. DOI: 10.1002/pc.26029.
  • Strzelec, K.; Pospiech, P. Improvement of Mechanical Properties and Electrical Conductivity of Polythiourethane-Modified Epoxy Coatings Filled with Aluminium Powder. Prog. Org. Coatings. 2008, 63(1), 133–138. DOI: 10.1016/j.porgcoat.2008.04.015.
  • Huang, C.; Qian, X.; Yang, R. Thermal Conductivity of Polymers and Polymer Nanocomposites. Mater. Sci. Eng. R Rep. 2018, 132, 1–22. DOI: 10.1016/j.mser.2018.06.002.
  • Shtein, M.; Nadiv, R.; Buzaglo, M.; Kahil, K.; Regev, O. Thermally Conductive Graphene-Polymer Composites: Size, Percolation, and Synergy Effects. chemistry of Materials. 2015, 27(6), 2100–2106. DOI: 10.1021/cm504550e.
  • Owais, M.; Zhao, J.; Imani, A.; Wang, G.; Zhang, H.; Zhang, Z. Synergetic Effect of Hybrid Fillers of Boron Nitride, Graphene Nanoplatelets, and Short Carbon Fibers for Enhanced Thermal Conductivity and Electrical Resistivity of Epoxy Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2019, 117, 11–22. DOI: 10.1016/j.compositesa.2018.11.006.
  • Lewis, J. S.; Barani, Z.; Magana, A. S.; Kargar, F.; Balandin, A. A. Thermal and Electrical Conductivity Control in Hybrid Composites with Graphene and Boron Nitride Fillers. Mater. Res. Express. 2019, 6, 085325. DOI: 10.1088/2053-1591/ab2215.
  • Razavi, S. M. J.; Ayatollahi, M. R.; Nemati Giv, A.; Khoramishad, H. Single Lap Joints Bonded with Structural Adhesives Reinforced with A Mixture of Silica Nanoparticles and Multi Walled Carbon Nanotubes. Int. J. Adhes. Adhes. 2018, 80, 76–86. DOI: 10.1016/j.ijadhadh.2017.10.007.
  • Zamani, P.; Jaamialahmadi, A.; da Silva, L. F. M. The Influence of GNP and Nano-Silica Additives on Fatigue Life and Crack Initiation Phase of Al-GFRP Bonded Lap Joints Subjected to Four-Point Bending. Compos. Part B Eng. 2021, 207, 108589. DOI: 10.1016/j.compositesb.2020.108589.
  • Zamani, P.; Alaei, M. H.; da Silva, L. F. M.; Ghahremani‐Moghadam, D. On the Static and Fatigue Life of nano-reinforced Al-GFRP Bonded Joints under Different Dispersion Treatments. Fatigue Fract. Eng. Mater. Struct. 2022, 45(4), 1088–1110. DOI: 10.1111/ffe.13652.
  • Özbek, Ö.; Çakır, M. V. MWCNT and Nano-Silica Hybrids Effect on Mechanical and Fracture Characterization of Single Lap Joints of GFRP Plates. Int. J. Adhes. Adhes. 2022, 117, 103159. DOI: 10.1016/j.ijadhadh.2022.103159.
  • Radshad, H.; Khoramishad, H.; Nazari, R. The Synergistic Effect of Hybridizing and Aligning Graphene Oxide Nanoplatelets and Multi-Walled Carbon Nanotubes on Mode-I Fracture Behavior of Nanocomposite Adhesive Joints. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2022, 236, 1764–1776. DOI: 10.1177/14644207221083528.
  • Zamani, P.; da Silva, L. F. M.; Masoudi Nejad, R.; Ghahremani Moghaddam, D.; Soltannia, B. Experimental Study on Mixing Ratio Effect of Hybrid Graphene Nanoplatelet/Nano-Silica Reinforcement on the Static and Fatigue Life of Aluminum-To-GFRP Bonded Joints under Four-Point Bending. Compos. Struct. 2022, 300, 116108. DOI: 10.1016/j.compstruct.2022.116108.
  • Hu, J.; Huang, Y.; Zeng, X.; Li, Q.; Ren, L.; Sun, R.; Xu, J.-B.; Wong, C.-P. Polymer Composite with Enhanced Thermal Conductivity and Mechanical Strength through Orientation Manipulating of BN. Compos. Sci. Technol. 2018, 160, 127–137. DOI: 10.1016/j.compscitech.2018.01.045.
  • Wang, S. J.; Zhong, S. L.; Dang, Z. M.; Zha, J. W.; Zheng, M. S. The Thermal Conductivity and Electrical Properties of EP Composite with Different Size BN. In 2018 IEEE 2nd International Conference on Dielectrics (ICD), Budapest, Hungary, July 1-5, 2018. IEEE, 2018.
  • Moradi, S.; Calventus, Y.; Román, F.; Hutchinson, J. M. Achieving High Thermal Conductivity in Epoxy Composites: Effect of Boron Nitride Particle Size and Matrix-Filler Interface. Polymers. 2019, 11(7), 1156. DOI: 10.3390/polym11071156.
  • Zhang, H.; Zhang, X.; Fang, Z.; Huang, Y.; Xu, H.; Liu, Y.; Wu, D.; Zhuang, J.; Sun, J. Recent Advances in Preparation, Mechanisms, and Applications of Thermally Conductive Polymer Composites: A Review. J. Compos. Sci. 2020, 4(4), 180. DOI: 10.3390/JCS4040180.
  • Hu, J.; Huang, Y.; Yao, Y.; Pan, G.; Sun, J.; Zeng, X.; Sun, R.; Xu, J. B.; Song, B.; Wong, C. P. Polymer Composite with Improved Thermal Conductivity by Constructing a Hierarchically Ordered Three-Dimensional Interconnected Network of BN. ACS Appl. Mater. Interfaces. 2017, 9(15), 13544–13553. DOI: 10.1021/acsami.7b02410.
  • Kargar, F.; Barani, Z.; Balinskiy, M.; Magana, A. S.; Lewis, J. S.; Balandin, A. A. Dual-Functional Graphene Composites for Electromagnetic Shielding and Thermal Management. Adv. Electron. Mater. 2019, 5(1), 1800558. DOI: 10.1002/aelm.201800558.
  • Wang, J.; Ma, F.; Sun, M. G. Hexagonal Boron Nitride, and Their Heterostructures: Properties and Applications. RSC Adv. 2017, 7(27), 16801–16822. DOI: 10.1039/c7ra00260b.
  • Zhang, C. H.; Huang, C. H.; Liu, W. R. Structural Design of Three-Dimensional Graphene/Nano Filler (Al2O3, BN, or TiO2) Resins and Their Application to Electrically Conductive Adhesives. Polymers. 2019, 11(10), 1713. DOI: 10.3390/polym11101713.
  • Kumar, R.; Nayak, S. K.; Sahoo, S.; Panda, B. P.; Mohanty, S.; Nayak, S. K. Study on Thermal Conductive Epoxy Adhesive Based on Adopting Hexagonal Boron Nitride/Graphite Hybrids. J. Mater. Sci. Mater. Electron. 2018, 29(19), 16932–16938. DOI: 10.1007/s10854-018-9788-3.
  • Kim, K.; Kim, J. Fabrication of Thermally Conductive Composite with Surface Modified Boron Nitride by Epoxy Wetting Method. Ceram. Int. 2014, 40(4), 5181–5189. DOI: 10.1016/j.ceramint.2013.10.076.
  • Chen, H.; Zhao, C.; Xu, S.; Yang, X. Preparation and Properties Study of Thermally Conductive Epoxy/Modified Boron Nitride/Graphene Nanosheets Composites. In IOP Conference Series: Materials Science and Engineering, 1st International Conference on Frontiers of Materials Synthesis and Processing (FMSP 2017), Changsha, China, October 28-29, 2017; IOP Publishing, 2017; p. 012043.
  • Nurdina, A. K.; Mariatti, M.; Samayamutthirian, P. Effect of Filler Surface Treatment on Mechanical Properties and Thermal Properties of Single and Hybrid Filler-Filled PP Composites. J. Appl. Polym. Sci. 2011, 120(2), 857–865. DOI: 10.1002/app.33156.
  • Leong, Y. W.; Bakar, M. B. A.; Ishak, Z. A. M.; Ariffin, A. Effects of Filler Treatments on the Mechanical, Flow, Thermal, and Morphological Properties of Talc and Calcium Carbonate Filled Polypropylene Hybrid Composites. J. Appl. Polym. Sci. 2005, 98(1), 413–426. DOI: 10.1002/app.21507.
  • Nayak, S. K.; Mohanty, S.; Nayak, S. K. Mechanical Properties and Thermal Conductivity of Epoxy Composites Enhanced by h-BN/RGO and mh-BN/GO Hybrid Filler for Microelectronics Packaging Application. SN Appl. Sci. 2019, 1(4), 1–15. DOI: 10.1007/s42452-019-0346-2.
  • Tang, D.; Su, J.; Kong, M.; Zhao, Z.; Yang, Q.; Huang, Y.; Liao, X.; Niu, Y. Preparation and Properties of Epoxy/Bn Highly Thermal Conductive Composites Reinforced with SiC Whisker. Polym. Compos. 2016, 37(9), 2611–2621. DOI: 10.1002/PC.23455.
  • Lee, J. H.; Shin, H.; Rhee, K. Y. Surface Functionalization of Boron Nitride Platelets via A Catalytic Oxidation/Silanization Process and Thermomechanical Properties of Boron Nitride-Epoxy Composites. Compos. Part B Eng. 2019, 157, 276–282. DOI: 10.1016/J.COMPOSITESB.2018.08.050.
  • Qi, T.; Li, Y.; Cheng, Y.; Xiao, F. Surface Treatments of Hexagonal Boron Nitride for Thermal Conductive Epoxy Composites. In 2014 15th International Conference on Electronic Packaging Technology, Chengdu, China, August 12-15, 2014; IEEE, 2014.
  • Wei, J.; Atif, R.; Vo, T.; Inam, F. Graphene Nanoplatelets in Epoxy System: Dispersion, Reaggregation, and Mechanical Properties of Nanocomposites. J. Nanomater. 2015, 16, 374. DOI: 10.1155/2015/561742.
  • Noh, Y. J.; Joh, H.-I.; Yu, J.; Hwang, S. H.; Lee, S.; Lee, C. H.; Kim, S. Y.; Youn, J. R. Ultra-high Dispersion of Graphene in Polymer Composite via Solvent freefabrication and Functionalization. Sci. Rep. 2015, 5(1), 1–7. DOI: 10.1038/srep09141.
  • Jasmee, S.; Omar, G.; Othaman, S. S.; Masripan, N. A. B.; Hamid, H. A.; Kamarolzaman, A. A. Preparation of GNPs Thermally Conductive Adhesive at Different Epoxy Resin/Curing Agent Ratio and Mixing Method. Int. J. Nanoelectron. Mater. 2021, 14, 159–176.
  • Kitak, T.; Dumičič, A.; Planinšek, O.; Šibanc, R.; Srčič, S.; Rades, T.; Grohganz, H.; Löbmann, K. Determination of Solubility Parameters of Ibuprofen and Ibuprofen Lysinate. Molecules. 2015, 20(12), 21549–21568. DOI: 10.3390/molecules201219777.
  • Shewale, S.; Shete, A. S.; Doijad, R. C.; Kadam, S. S.; Patil, V. A.; Yadav, A. V. Formulation and Solid State Characterization of Nicotinamide-Based Co-Crystals of Fenofibrate. Indian J. Pharm. Sci. 2015, 77(3), 328–334. DOI: 10.4103/0250-474X.159669.
  • Tüzün, F. N.; Tunalıoğlu, M. Ş. The Effect of Finely-Divided Fillers on the Adhesion Strengths of Epoxy-Based Adhesives. Compos. Struct. 2015, 121, 296–303. DOI: 10.1016/j.compstruct.2014.11.007.
  • Gugliotti, M.; Silverstein, T. Tears of Wine. J. Chem. Educ. 2004, 81(1), 67–68. DOI: 10.1021/ed081p67.
  • Bonk, R. B.; Osterndorf, J. F.; Ambrosio, A. M.; Pettenger, B. L. Evaluation of Adhesives for Adhering Carbon/Epoxy Composites to Various Metallic Substrates. In Society for the Advancement of Material and Process Engineering, 41st International SAMPE Symposium and Exhibition; Schmitt, G., Bauer, J., Magurany, C. J., Hurley, C., Kliger, H., Eds. December 12, OSTI.GOV: United States: Covina, 1996.
  • Rudawska, A.; Nalepa, J.; Müller, M. The Effect of Degreasing on Adhesive Joint Strength. Adv. Sci. Technol. Res. J. 2017, 11(1), 75–81. DOI: 10.12913/22998624/66500.
  • Will, G.; Kirfel, A.; Josten, B. Charge Density and Chemical Bonding in Cubic Boron Nitride. J. Less Common Met. 1986, 117(1–2), 61–71. DOI: 10.1016/0022-5088(86)90012-3.
  • Kim, K.; Kim, M.; Hwang, Y.; Kim, J. Chemically Modified Boron Nitride-Epoxy Terminated Dimethylsiloxane Composite for Improving the Thermal Conductivity. Ceram. Int. 2014, 40(1), 2047–2056. DOI: 10.1016/j.ceramint.2013.07.117.
  • Permal, A.; Devarajan, M.; Hung, H. L.; Zahner, T.; Lacey, D.; Ibrahim, K. Thermal and Mechanical Properties of Epoxy Composite Filled with Binary Particle System of Polygonal Aluminum Oxide and Boron Nitride Platelets. J. Mater. Sci. 2016, 51(16), 7415–7426. DOI: 10.1007/S10853-016-0016-3.
  • Tcharkhtchi, A.; Nony, F.; Khelladi, S.; Fitoussi, J.; Farzaneh, S. Epoxy/Amine Reactive Systems for Composites Materials and Their Thermomechanical Properties. Adv. Compos. Manuf. Process Des. 2015, 269–296. DOI: 10.1016/b978-1-78242-307-2.00013-0.
  • Mostovoy, A. S.; Vikulova, M. A.; Lopukhova, M. I. Reinforcing Effects of Aminosilane-Functionalized h-BN on the Physicochemical and Mechanical Behaviors of Epoxy Nanocomposites. Sci. Rep. 2020, 10, 1–11. DOI: 10.1038/s41598-020-67759-z.
  • Yue, C.; Guan, L.; Zhang, X.; Wang, Y.; Weng, L. Thermally Conductive Epoxy/Boron Nitride Composites with High Glass Transition Temperatures for Thermal Interface Materials. Mater. Des. 2021, 212, 110190. DOI: 10.1016/j.matdes.2021.110190.
  • Jose, J. P.; Thomas, S. XLPE Based Al 2 O 3 –clay Binary and Ternary Hybrid Nanocomposites: Self-assembly of Nanoscale Hybrid Fillers, Polymer Chain Confinement and Transport Characteristics. Phys. Chem. Chem. Phys. 2014, 16(37), 20190–20201. DOI: 10.1039/c4cp03403a.
  • Dufresne, A. Processing of Polymer Nanocomposites Reinforced with Polysaccharide Nanocrystals. Molecules. 2010, 15(6), 4111–4128. DOI: 10.3390/molecules15064111.
  • Kaneko, K. Surface and Hidden Surface-controlled Carbon Alloys. In Carbon Alloy: Novel Concepts to Develop Carbon Science and Technology; Yasuda, E., Inagaki, M., Kaneko, K., Endo, M., Oya, A., Tanabe, Y., Eds.; Elsevier Science & Technology: Oxford, United Kingdom, 2003; pp 57–81.
  • Vasiljevic, T.; Harner, T. Bisphenol A and Its Analogues in Outdoor and Indoor Air: Properties, Sources and Global Levels. Sci. Total Environ. 2021, 789, 148013. DOI: 10.1016/j.scitotenv.2021.148013.
  • Liu, J.; Liu, T.; Kumar, S. Effect of Solvent Solubility Parameter on SWNT Dispersion in PMMA. Polymer. 2005, 46(10), 3419–3424. DOI: 10.1016/j.polymer.2005.02.086.
  • Su, X.; Shi, B. Effect of Silane Coupling Agents with Different Non-Hydrolytic Groups on Tensile Modulus of Composite PDMS Crosslinked Membranes. React. Funct. Polym. 2016, 98, 1–8. DOI: 10.1016/j.reactfunctpolym.2015.11.001.
  • Kargar, F.; Barani, Z.; Salgado, R.; Debnath, B.; Lewis, J. S.; Aytan, E.; Lake, R. K.; Balandin, A. A. Thermal Percolation Threshold and Thermal Properties of Composites with High Loading of Graphene and Boron Nitride Fillers. ACS Applied Materials & Interfaces. 2018, 10(43), 37555–37565. DOI: 10.1021/acsami.8b16616.
  • Huang, X.; Iizuka, T.; Jiang, P.; Ohki, Y.; Tanaka, T. Role of Interface on the Thermal Conductivity of Highly Filled Dielectric Epoxy/AIN Composites. J. Phys. Chem. C. 2014, 116(25]), 13629–13639. DOI: 10.1021/jp3026545.
  • Yue, L.; Pircheraghi, G.; Monemian, S. A.; Manas-Zloczower, I. Epoxy Composites with Carbon Nanotubes and Graphene Nanoplatelets - Dispersion and Synergy Effects. Carbon. 2014, 78, 268–278. DOI: 10.1016/j.carbon.2014.07.003.
  • Jang, J. U.; Lee, S. H.; Kim, J.; Kim, S. Y.; Kim, S. H. Nano-Bridge Effect on Thermal Conductivity of Hybrid Polymer Composites Incorporating 1D and 2D Nanocarbon Fillers. Compos. Part B Eng. 2021, 222. DOI: 10.1016/j.compositesb.2021.109072.
  • Callister, W. D.; Rethwisch, D. G. Materials Science and Engineering: An Introduction; John Wiley & Sons: United States, 2018.
  • Kim, T. Y.; Park, C.-H.; Marzari, N. The Electronic Thermal Conductivity of Graphene. Nano Lett. 2016, 16(4), 2439–2443. DOI: 10.1080/01694243.2019.1646062.
  • Yu, Z.; Wang, X.; Bian, H.; Jiao, L.; Wu, W.; Dai, H. Enhancement of the Heat Conduction Performance of Boron Nitride/Cellulosic Fibre Insulating Composites. Plos One. 2012, 13, e0200842. DOI: 10.1371/journal.pone.0200842.
  • Mun, S. Y.; Lim, H. M.; Lee, S. H. Thermal and Electrical Properties of Epoxy Composite with Expanded Graphite-Ceramic Core-Shell Hybrids. Mater. Res. Bull. 2018, 97, 19–23. DOI: 10.1016/j.materresbull.2017.06.046.
  • Kim, W.-S.; Yun, I.-H.; Lee, -J.-J.; Jung, H.-T. Evaluation of Mechanical Interlock Effect on Adhesion Strength of polymer–metal Interfaces Using micro-patterned Surface Topography. Int. J. Adhes. Adhes. 2010, 30(6), 408–417. DOI: 10.1016/j.ijadhadh.2010.05.004.
  • Evans, A. G. The Strength of Brittle Materials Containing Second Phase Dispersions. Philos. Mag. A J. Theor. Exp. Appl. Phys. 1972, 26, 1327–1344. DOI: 10.1080/14786437208220346.
  • Green, D. J.; Nicholson, P. S.; Embury, J. D. Fracture of A Brittle Particulate Composite. J. Mater. Sci. 1979, 14(7), 1657–1661. DOI: 10.1007/bf00549316.
  • Jojibabu, P.; Jagannatham, M.; Haridoss, P.; Janaki Ram, G. D.; Deshpande, A. P.; Bakshi, S. R. Effect of Different Carbon Nano-Fillers on Rheological Properties and Lap Shear Strength of Epoxy Adhesive Joints. Compos. Part A Appl. Sci. Manuf. 2016, 82, 53–64. DOI: 10.1016/j.compositesa.2015.12.003.
  • Vietri, U.; Guadagno, L.; Raimondo, M.; Vertuccio, L.; Lafdi, K. Nanofilled Epoxy Adhesive for Structural Aeronautic Materials. Composites Part B: Engineering. 2014, 61, 73–83. DOI: 10.1016/j.compscitech.2009.09.018.
  • Lin, W.; Xi, X.; Yu, C. Research of Silver Plating Nano-Graphite Filled Conductive Adhesive. Synth. Met. 2009, 159(7–8), 619–624. DOI: 10.1016/j.synthmet.2008.12.003.
  • Prolongo, S. G.; Jiménez-Suárez, A.; Moriche, R.; Ureña, A. Influence of Thickness and Lateral Size of Graphene Nanoplatelets on Water Uptake in Epoxy/Graphene Nanocomposites. Appl. Sci. 2018, 8(9), 1550. DOI: 10.3390/APP8091550.
  • Si, Y.; Samulski, E. T. Synthesis of Water Soluble Graphene. Nano Lett. 2008, 8(6), 1679–1682. DOI: 10.1021/nl080604h.
  • Pukanszky, B. É. L. A.; Vörös, G. Mechanism of Interfacial Interactions in Particulate Filled Composites. Compos. Interfaces. 1993, 1(5), 411–427. DOI: 10.1163/156855493x00266.
  • Reynaud, E.; Jouen, T.; Gauthier, C.; Vigier, G.; Varlet, J. Nanofillers in Polymeric Matrix: A Study on Silica Reinforced PA6. Polymer. 2001, 42, 8759–8768. DOI: 10.1016/S0032-3861(01)00446-3.
  • Sumita, M.; Shizuma, T.; Miyasaka, K.; Ishikawa, K. Effect of Reducible Properties of Temperature, Rate of Strain, and Filler Content on the Tensile Yield Stress of Nylon 6 Composites Filled with Ultrafine Particles. J. Macromol. Sci. B. 2006, 22(4), 601–618. DOI: 10.1080/00222348308224779.
  • Buggy, M.; Bradley, G.; Sullivan, A. Polymer-Filler Interactions in Kaolin/Nylon 6,6 Composites Containing A Silane Coupling Agent. Compos. Part A Appl. Sci. Manuf. 2005, 36(4), 437–442. DOI: 10.1016/j.compositesa.2004.10.002.
  • Jose, J. P.; Thomas, S. Alumina–Clay Nanoscale Hybrid Filler Assembling in Cross-Linked Polyethylene Based Nanocomposites: Mechanics and Thermal Properties. Phys. Chem. Chem. Phys. 2014, 16, 14730–14740. DOI: 10.1039/c4cp01532k.
  • Shou, Q. L.; Cheng, J. P.; Fang, J. H.; Lu, F. H.; Zhao, J. J.; Tao, X. Y.; Liu, F.; Zhang, X. B. Thermal Conductivity of Poly Vinylidene Fluoride Composites Filled with Expanded Graphite and Carbon Nanotubes. J. Appl. Polym. Sci. 2013, 127(3), 1697–1702. DOI: 10.1002/app.37876.
  • Lee, C. H.; Khalina, A.; Lee, S. H. Importance of Interfacial Adhesion Condition on Characterization of Plant-Fiber-Reinforced Polymer Composites: A Review. Polymers. 2021, 13, 1–22. DOI: 10.3390/polym13030438.
  • Wang, N.; Wang, S.; Tang, L.; Ye, L.; Cullbrand, B.; Zehri, A.; Tebikachew, B. E.; Liu, J. Improved Interfacial Bonding Strength and Reliability of Functionalized Graphene Oxide for Cement Reinforcement Applications. Chem. A Eur. J. 2020, 26(29), 6561–6568. DOI: 10.1002/chem.201904625.
  • Im, H.; Hwang, Y.; Moon, J. H.; Lee, S. H.; Kim, J. The Thermal Conductivity of Al(OH)3 Covered MWCNT/Epoxy Terminated Dimethyl Polysiloxane Composite Based on Analytical Al(OH)3 Covered MWCNT. Compos. Part A Appl. Sci. Manuf. 2013, 54, 159–165. DOI: 10.1016/j.compositesa.2013.07.020.
  • Li, J.; Sham, M. L.; Kim, J. K.; Marom, G. Morphology and Properties of UV/Ozone Treated Graphite Nanoplatelet/Epoxy Nanocomposites. Compos. Sci. Technol. 2007, 67(2), 296–305. DOI: 10.1016/j.compscitech.2006.08.009.
  • Patti, A.; Russo, P.; Acierno, D.; Acierno, S. The Effect of Filler Functionalisation on Dispersion and Thermal Conductivity of Polypropylene/Multi Wall Carbon Nanotubes Composites. Compos. Part B Eng. 2016, 94, 350–359. DOI: 10.1016/j.compositesb.2016.03.072.
  • Lin, Y.-S.; Hsu, S. L.-C.; Ho, T.-H.; Jheng, L.-C.; Hsiao, Y.-H. Preparation and Thermomechanical Properties of Ketone Mesogenic Liquid Crystalline Epoxy Resin Composites with Functionalized Boron Nitride. Polymers. 2020, 12(9), 1913–1927. DOI: 10.3390/polym12091913.
  • Evans, W.; Prasher, R.; Fish, J.; Meakin, P.; Phelan, P.; Keblinski, P. Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids. Int. J. Heat Mass Transf. 2008, 51(5–6), 1431–1438. DOI: 10.1016/j.ijheatmasstransfer.2007.10.017.
  • Liu, Q.; Zhou, X.; Fan, X.; Zhu, C.; Yao, X.; Liu, Z. Mechanical and Thermal Properties of Epoxy Resin Nanocomposites Reinforced with Graphene Oxide. Polym. Plast. Technol. Eng. 2012, 51(3), 251–256. DOI: 10.1080/03602559.2011.625381.
  • Ayatollahi, M. R.; Nemati Giv, A.; Razavi, S. M. J.; Khoramishad, H. Mechanical Properties of Adhesively Single Lap-Bonded Joints Reinforced with Multi-Walled Carbon Nanotubes and Silica Nanoparticles. J. Adhes. 2016, 93(11), 896–913. DOI: 10.1080/00218464.2016.1187069.
  • Wernik, J. M.; Meguid, S. A. On the Mechanical Characterization of Carbon Nanotube Reinforced Epoxy Adhesives. Mater. Des. 2014, 59, 19–32. DOI: 10.1016/j.matdes.2014.02.034.
  • Khoramishad, H.; Ashofteh, R. S.; Pourang, H.; Berto, F. Experimental Investigation of the Influence of Temperature on the Reinforcing Effect of Graphene Oxide Nano-Platelet on Nanocomposite Adhesively Bonded Joints. Theor. Appl. Fract. Mech. 2018, 94, 95–100. DOI: 10.3390/nano8110940.
  • Zamanian, M.; Mortezaei, M.; Salehnia, B.; Jam, J. E. Fracture Toughness of Epoxy Polymer Modified with Nanosilica Particles: Particle Size Effect. Eng. Fract. Mech. 2013, 97, 193–206. DOI: 10.1016/j.engfracmech.2012.10.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.