892
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Static strength prediction of curved composite joints under internal pressure

, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 2119-2144 | Received 18 Oct 2022, Accepted 23 Jan 2023, Published online: 06 Feb 2023

References

  • Quini, J. G.; Marinucci, G. Polyurethane Structural Adhesives Applied in Automotive Composite Joints. Mater. Res. 2012, 15(3), 434–439. DOI: 10.1590/s1516-14392012005000042.
  • Romano, M. G.; Guida, M.; Marulo, F.; Giugliano Auricchio, M.; Russo, S. Characterization of Adhesives Bonding in Aircraft Structures. Materials. 2020, 13(21), 4816. DOI: 10.3390/ma13214816.
  • Machalická, K. V.; Vokáč, M.; Pokorný, P.; Pavlíková, M. Effect of Various Artificial Ageing Procedures on Adhesive Joints for Civil Engineering Applications. Int. J. Adhes. Adhes. 2020, 97(5), 102476. DOI: 10.1016/j.ijadhadh.2019.102476.
  • Petrie, E. M. Adhesives in the Marine Industry. Metal Finishing. 2013, 1116, 47–49. DOI:10.1016/s0026-0576(13)70288-5.
  • Zheng, G.; Wang, H.; Han, X.; Li, W. Mechanical Behavior of AL/CFRP single-lap Joint Subjected to Combined Thermal and Constant Loading. J. Adhes. 2021, 97(4), 361–379. DOI: 10.1080/00218464.2019.1667237.
  • Martínez, M. A.; López de Armentia, S.; Abenojar, J. Influence of Sample Dimensions on Single Lap Joints: Effect of Interactions between Parameters. J. Adhes. 2021, 97(14), 1358–1369. DOI: 10.1080/00218464.2020.1771313.
  • Mardani, H.; Stein, N.; Rosendahl, P. L.; Becker, W. An Efficient Stress and Deformation Model for Arbitrary elastic-perfectly Plastic Adhesive Lap Joints. Int. J. Adhes. Adhes. 2020, 103, 102679. DOI: 10.1016/j.ijadhadh.2020.102679.
  • Adams, R. D.; Wake, W. D. Structural Adhesive Joints in Engineering; Elsevier Applied Science Publishers LTD: Essex, England, 1984.
  • Kadioglu, F. Effects of Compressive Applied Load on the Adhesive Single Lap Joint with Different Parameters. J. Adhes. 2022, 98(4), 390–411. DOI: 10.1080/00218464.2020.1834390.
  • Behera, R. K.; Parida, S. K.; Das, R. R. Effect of pre-embedded Adhesion Failures and Surface Ply Delaminations on the Structural Integrity of Adhesively Bonded Single Lap Joints Made with Curved Laminated FRP Composite Panels. Int. J. Adhes. Adhes. 2021, 108, 102887. DOI: 10.1016/j.ijadhadh.2021.102887.
  • Ascione, F.; Mancusi, G. Curve Adhesive Joints. Compos. Struct. 2012, 94(8), 2657–2664. DOI: 10.1016/j.compstruct.2012.03.024.
  • Kim, H.; Kedward, K. Stress Analysis of in-plane, shear-loaded, Adhesively Bonded Composite Joints and Assemblies; Office of Aviation Research: Washington, USA, 04January 2001, 36.
  • Çitil, Ş.; Ayaz, Y.; Temiz, Ş.; Aydın, M. D. Mechanical Behaviour of Adhesively Repaired Pipes Subject to Internal Pressure. Int. J. Adhes. Adhes. 2017, 75, 88–95. DOI: 10.1016/j.ijadhadh.2017.02.015.
  • Ayaz, Y.; Çitil, Ş.; Şahan, M. F. Repair of Small Damages in Steel Pipes with Composite Patches. Mater. Sci. Eng. Technol. 2016, 47(5–6), 503–511. DOI: 10.1002/mawe.201600526.
  • Taib, A. A.; Boukhili, R.; Achiou, S.; Boukehili, H. Bonded Joints with Composite Adherends. Part II. Finite Element Analysis of Joggle Lap Joints. Int. J. Adhes. Adhes. 2006, 26(4), 237–248. DOI: 10.1016/j.ijadhadh.2005.03.014.
  • Barile, C.; Casavola, C.; Moramarco, V.; Pappalettere, C.; Vimalathithan, P. K. Bonding Characteristics of Single- and Joggled-Lap CFRP Specimens: Mechanical and Acoustic Investigations. Applied Sciences. 2020, 10 5, 1782. DOI:10.3390/app10051782.
  • Zimmermann, J.; Schalm, T.; Sadeghi, M. Z.; Gabener, A.; Schröder, K. U. Analytical Stiffness Analysis of Adhesively Bonded single-lap Joints Subjected to out-of-plane Deflection Due to Tensile Loading. J Adhes. 2022, 98(11), 1635–1662. DOI:10.1080/00218464.2021.1932483.
  • Hassan Vand, M.; Abbaszadeh, H.; Shishesaz, M. Optimization of Adhesive single-lap Joints under Bending Moment. J Adhes. 2022, 9811, 1687–1712. DOI:10.1080/00218464.2021.1932485.
  • Sun, L.; Tie, Y.; Hou, Y.; Lu, X.; Li, C. Prediction of Failure Behavior of Adhesively Bonded CFRP Scarf Joints Using a Cohesive Zone Model. Eng. Fract. Mech. 2020, 228, 106897. DOI: 10.1016/j.engfracmech.2020.106897.
  • Alfano, G. On the Influence of the Shape of the Interface Law on the Application of cohesive-zone Models. Compos. Sci. Technol. 2006, 66(6), 723–730. DOI: 10.1016/j.compscitech.2004.12.024.
  • Campilho, R. D. S. G.; Banea, M. D.; Neto, J. A. B. P.; da Silva, L. F. M. Modelling Adhesive Joints with Cohesive Zone Models: Effect of the Cohesive Law Shape of the Adhesive Layer. Int. J. Adhes. Adhes. 2013, 44, 48–56. DOI: 10.1016/j.ijadhadh.2013.02.006.
  • Faneco, T. M. S.; Campilho, R. D. S. G.; Silva, F. J. G.; Lopes, R. M. Strength and Fracture Characterization of a Novel Polyurethane Adhesive for the Automotive Industry. J Testing Eval. 2017, 45(2), 398–407. DOI: 10.1520/JTE20150335.
  • Monsef, S. A.; Pérez-Galmés, M.; Renart, J.; Turon, A.; Maimí, P. The Influence of Mode II Test Configuration on the Cohesive Law of Bonded Joints. Compos. Struct. 2020, 234, 111689. DOI: 10.1016/j.compstruct.2019.111689.
  • Sadeghi, M. Z.; Gabener, A.; Zimmermann, J.; Saravana, K.; Weiland, J.; Reisgen, U.; Schroeder, K. U. Failure Load Prediction of Adhesively Bonded Single Lap Joints by Using Various FEM Techniques. Int. J. Adhes. Adhes. 2020, 97, 102493. DOI: 10.1016/j.ijadhadh.2019.102493.
  • Moës, N.; Dolbow, J.; Belytschko, T. A Finite Element Method for Crack Growth without Remeshing. Int. J. Numer. Methods Eng. 1999, 46(1), 131–150. DOI: 10.1002/(SICI)1097-0207(19990910)46:1<131.
  • Rabczuk, T.; Song, J.-H.; Zhuang, X.; Anitescu, C. Extended Finite Element and Meshfree Methods; Academic Press: London, UK, 2020.
  • Machado, R. M. D.; Campilho, R. D. S. G.; Rocha, R. J. B. Extended Finite Element Modelling of Aluminium stepped-adhesive Joints. J. Adhes. 2019, 95(5–7), 450–473. DOI: 10.1080/00218464.2018.1548966.
  • Liu, Y.; Lemanski, S.; Zhang, X. Parametric Study of Size, Curvature and Free Edge Effects on the Predicted Strength of Bonded Composite Joints. Compos. Struct. 2018, 202, 364–373. DOI: 10.1016/j.compstruct.2018.02.017.
  • Correia, J. M. C.; Campilho, R. D. S. G.; Rocha, R. J. B.; Liu, Y.; Ramalho, L. D. C. Parametric Study of Composite Curved Adhesive Joints. Int. J. Adv. Manuf. Technol. 2020, 111(9–10), 2957–2970. DOI: 10.1007/s00170-020-06314-6.
  • Ji, Y.; Li, Z.; Liu, L.; Wang, J.; Wu, J. A Deformation Detection Method for Aircraft Skin on Uniform Pressure by Using Speckle Image Correlation Technology. Measurement. 2020, 154, 107525. DOI: 10.1016/j.measurement.2020.107525.
  • Campilho, R. D. S. G.; de Moura, M. F. S. F.; Domingues, J. J. M. S. Modelling Single and double-lap Repairs on Composite Materials. Composites Science and Technology 2005, 6513, 1948–1958 10.1016/j.compscitech.2005.04.007
  • Neto, J. A. B. P.; Campilho, R. D. S. G.; da Silva, L. F. M. Parametric Study of Adhesive Joints with Composites. Int. J. Adhes. Adhes. 2012, 37, 96–101. DOI: 10.1016/j.ijadhadh.2012.01.019.
  • Katsivalis, I.; Thomsen, O. T.; Feih, S.; Achintha, M. Development of Cohesive Zone Models for the Prediction of Damage and Failure of glass/steel Adhesive Joints. Int. J. Adhes. Adhes. 2020, 97, 102479. DOI: 10.1016/j.ijadhadh.2019.102479.
  • de Souza Neto, E. A.; Perić, D.; Owen, D. R. J. Computational Methods for Plasticity, Theory and Applications; John Wiley and Sons Ltd: Sussex, UK, 2008; pp 816.
  • Kim, K. Softening Behaviour Modelling of Aluminium Alloy 6082 Using a non-linear Cohesive Zone Law. Proc. Inst. Mech. Eng. Part L. 2015, 229(5), 431–435. DOI: 10.1177/1464420714525134.
  • Campilho, R. D. S. G.; Banea, M. D.; Pinto, A. M. G.; da Silva, L. F. M.; de Jesus, A. M. P. Strength Prediction of Single- and double-lap Joints by Standard and Extended Finite Element Modelling. Int. J. Adhes. Adhes. 2011, 31(5), 363–372. DOI: 10.1016/j.ijadhadh.2010.09.008.
  • Campilho, R. D. S. G.; de Moura, M. F. S. F.; Ramantani, D. A.; Morais, J. J. L.; Domingues, J. J. M. S. Buckling Behaviour of carbon–epoxy adhesively-bonded Scarf Repairs. J. Adhes. Sci. Technol. 2009, 23(10–11), 1493–1513. DOI: 10.1163/156856109X433045.
  • Kang, S.-G.; Kim, M.-G.; Kim, C.-G. Evaluation of Cryogenic Performance of Adhesives Using composite–aluminum double-lap Joints. Compos. Struct. 2007,783, 440–446.DOI
  • Lim, G.-H.; Heidari-Rarani, M.; Bodjona, K.; Raju, K. P.; Romanov, V.; Lessard, L. Mechanical Characterization of a Flexible Epoxy Adhesive for the Design of Hybrid bonded-bolted Joints. Polym. Test. 2019, 79, 106048. DOI: 10.1016/j.polymertesting.2019.106048.
  • Nunes, S. L. S.; Campilho, R. D. S. G.; da Silva, F. J. G.; de Sousa, C. C. R. G.; Fernandes, T. A. B.; Banea, M. D.; da Silva, L. F. M. Comparative Failure Assessment of Single and double-lap Joints with Varying Adhesive Systems. J. Adhes. 2016, 92(7–9), 610–634. DOI: 10.1080/00218464.2015.1103227.