170
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of adhesion on the frictionless receding contact between an elastic layer and a substrate

, &
Pages 63-81 | Received 27 Sep 2022, Accepted 19 Mar 2023, Published online: 24 Mar 2023

References

  • Chen, J.; Guo, X. L.; Tang, Q.; Zhuang, C. Y.; Liu, J. S.; Wu, S. Q.; Beake, B.D. Nanomechanical Properties of Graphene on Poly (Ethylene Terephthalate) Substrate. Carbon 2013, 55, 144–150.
  • Jiang, H. J.; Zheng, L.; Wei, Y.; Wang, X. W. In-Situ Investigation of the Elastic Behavior of Two-Dimensional MoS2 on Flexible Substrate by Nanoindentation. J. Phys D: Appl Phys. 2021, 50, 504006. DOI: 10.1088/1361-6463/ac2275.
  • Ke, J.; Ying, P. H.; Du, Y.; Zou, B.; Sun, H. R.; Zhang, J. Delamination of MoS2/SiO2 Interfaces Under Nanoindentation. Phys. Chem. Chem. Phys. 2022, 26, 15991–16002. DOI: 10.1039/D2CP00074A.
  • Liu, K.; Yan, Q. M.; Chen, M.; Fan, W.; Sun, Y. H.; Suh, J.; Fu, D.; Lee, S.; Zhou, J.; Tongay, S., et al. Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures. Nano Lett. 2014, 14, 5097–5103. DOI: 10.1021/nl501793a.
  • Lu, M. Y.; Huang, H. Determination of the Energy Release Rate in the Interfacial Delamination of Silicon Nitride Film on Gallium Arsenide Substrate via. J. Mater. Res. 2014, 29, 801–810. DOI: 10.1557/jmr.2014.41.
  • Niu, T.; Cao, G.; Xiong, C. Indentation Behavior of the Stiffest Membrane Mounted on a Very Compliant Substrate: Graphene on PDMS. Int. J. Solids. Struct. 2018, 132–133, 1–8. DOI: 10.1016/j.ijsolstr.2017.05.038.
  • Wei, X. D.; Kysar, J. W. Experimental Validation of Multiscale Modeling of Indentation of Suspended Circular Graphene Membranes. Int. J. Solids. Struct. 2012, 49, 3201–3209. DOI: 10.1016/j.ijsolstr.2012.06.019.
  • Zhang, Y. P.; Pan, C. X. Measurements of Mechanical Properties and Number of Layers of Graphene from Nano-Indentation. Diam. Relat. Mater. 2012, 24, 1–5. DOI: 10.1016/j.diamond.2012.01.033.
  • Zhou, L.; Wang, Y.; Cao, G. van der Waals Effect on the Nanoindentation Response of Free- Standing Monolayer Graphene Carbon. 2013, 57, 357–362.
  • Cao, G.; Gao, H. Mechanical Properties Characterization of Two-Dimensional Materials via Nanoindentation Experiments. Prog. Mater. Sci. 2019, 103, 558–595. DOI: 10.1016/j.pmatsci.2019.03.002.
  • Roger, A. S. A Survey of Computational Models for Adhesion. J. Adhesion. 2016, 92(2), 81–120. DOI: 10.1080/00218464.2014.1003210.
  • Sauer, R. A.; Li, S. An Atomistically Enriched Continuum Model for Nanoscale Contact Mechanics and Its Application to Contact Scaling. J. Nanosci. Nanotechnol. 2008, 7, 8. DOI: 10.1166/jnn.2008.18341.
  • Radhakrishnan, H. Adhesive Contact of Elastic Spheres Revisited: Numerical Models and Scaling. Proc. R. Soc. A: Math. Phys. Eng. Sci. 2009, 465, 2231–2249.
  • Bunch, J. S.; Van der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Electromechanical Resonators from Graphene Sheets. Science. 2007, 315, 490–493. DOI: 10.1126/science.1136836.
  • Kim, K. S.; Zhao, Y. H.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. -H.; Kim, P.; Choi, J. -Y.; Hong, B. H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature. 2009, 457, 706–710. DOI: 10.1038/nature07719.
  • Chen, S. S.; Brown, L.; Levendorf, M.; Cai, W. W.; Ju, S. Y.; Edgeworth, J.; Li, X.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D., et al. Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy, ACS. Nano. 2011, 5, 1321–1327. DOI: 10.1021/nn103028d.
  • Suk, J. W.; Kirk, K.; Hao, Y. F.; Hall, N. A.; Ruoff, R. S. Thermoacoustic Sound Generation from Monolayer Graphene for Transparent and Flexible Sound Sources. Adv. Mater. 2012, 24, 6342–6347. DOI: 10.1002/adma.201201782.
  • Liu, X. H.; Suk, J. W.; Boddeti, N. G.; Cantley, L.; Wang, L. D.; Gray, J. M.; Hall, H. J.; Bright, V. M.; Rogers, C. T.; Dunn, M. L., et al. Large Arrays and Properties of 3-Terminal Graphene Nanoelectromechanical Switches. Adv. Mater. 2014, 26, 1571–1576. DOI: 10.1002/adma.201304949.
  • Barsoum, M. W.; Tucker, G. J. Deformation of Layered Solids: Ripplocations Not Basal Dislocations. Scr. Mater. 2017, 139, 166–172. DOI: 10.1016/j.scriptamat.2017.04.002.
  • Gruber, J.; Lang, A. C.; Griggs, J.; Taheri, M. L.; Tucker, G. J.; Barsoum, M. W. Evidence for Bulk Ripplocations in Layered Solids. Sci. Rep. 2016, 6, 33451. DOI: 10.1038/srep33451.
  • Griggs, J.; Lang, A. C.; Gruber, J.; Tucker, G. J.; Taheri, M. L.; Barsoum, M. W. Spherical Nanoindentation, Modeling and Transmission Electron Microscopy Evidence for Ripplocations in Ti3SiC2. Acta Mater. 2017, 131, 141–155. DOI: 10.1016/j.actamat.2017.03.055.
  • Kushima, A.; Qian, X.; Zhao, P.; Zhang, S.; Li, J. Ripplocations in van der Waals Layers. Nano Lett. 2015, 15, 1302–1308. DOI: 10.1021/nl5045082.
  • Freiberg, D.; Barsoum, M. W.; Tucker, G. J. Nucleation of Ripplocations Through Atomistic Modeling of Surface Nanoindentation in Graphite. Phys. Rev. Mater. 2018, 2, 053602. DOI: 10.1103/PhysRevMaterials.2.053602.
  • Savin, A. V.; Korznikova, E. A.; Dmitriev, S. V. Dynamics of Surface Graphene Ripplocations on a Flat Graphite Substrate. Phys. Rev. B. 2019, 23, 235411. DOI: 10.1103/PhysRevB.99.235411.
  • Johnson, K. L.; Kendall, K.; Roberts, A. D. Surface Energy and the Contact of Elastic Solids. Proc. R. Soc. London A. 1971, 324, 301–313.
  • Derjaguin, B. V.; Muller, V. M.; Toporov, Y. P. Effect of Contact Deformations on the Adhesion of Particles. J. Colloid. Interface. Sci. 1975, 53, 314–326. DOI: 10.1016/0021-9797(75)90018-1.
  • Maugis, D. Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model. J. Colloid. Interface. Sci. 1992, 150, 243–269. DOI: 10.1016/0021-9797(92)90285-T.
  • Borodich, F. M. The Hertz-Type and Adhesive Contact Problems for Depth-Sensing Indentation. Adv. Appl. Mech. 2014, 47, 225–366.
  • Borodich, F. M.; Galanov, B. A.; Suarez-Alvarez, M. M. The JKR-Type Adhesive Contact Problems for Power-Law Shaped Axisymmetric Punches. J. Mech. Phys. Solid. 2014, 68, 14–32. DOI: 10.1016/j.jmps.2014.03.003.
  • Borodich, F. M.; Galanov, B. A. Contact Probing of Stretched Membranes and Adhesive Interactions: Graphene and Other Two-Dimensional Materials. Proc. Roy. Soc. A. 2016, 2195, 20160550. DOI: 10.1098/rspa.2016.0550.
  • Dundurs, J.; Stippes, M. Role of Elastic Constants in Certain Contact Problems. J. Appl. Mech. 1970, 37(4), 965–970. DOI: 10.1115/1.3408725.
  • Johnson, K. L. Contact Mechanics; London: Cambridge University Press, 1985.
  • Adams, G. G. The Contact Stress Distribution in the Receding Contact of an Elastic Layer with a Rigid Base. Int. J. Solid. Struct, 2022, 238, 111384
  • Civelek, M. B.; Erdogan, F. The Axisymmetric Double Contact Problem for a Frictionless Elastic Layer. Int. J. Solid Struct. 1974, 10, 639–659. DOI: 10.1016/0020-7683(74)90048-1.
  • Keer, L. M.; Dundurs, J.; Tsai, K. C. Problems Involving a Receding Contact Between a Layer and a Half Space. J. Appl. Mech. 1972, 39, 1115–1120. DOI: 10.1115/1.3422839.
  • Ratwani, M.; Erdogan, F. On the Plane Contact Problem for a Frictionless Elastic Layer. Int. J. Solid Struct. 1973, 9, 921–936. DOI: 10.1016/0020-7683(73)90021-8.
  • Adıyaman, G.; Birinci, A.; Öner, E.; Yaylacı, M. A Receding Contact Problem Between a Functionally Graded Layer and Two Homogeneous Quarter Planes. Acta Mech. 2016, 227, 1753–1766. DOI: 10.1007/s00707-016-1580-y.
  • Ahn, Y. J.; Barber, J. R. Response of Frictional Receding Contact Problems to Cyclic Loading. Int. J. Mech. Sci. 2008, 50, 1519–1525. DOI: 10.1016/j.ijmecsci.2008.08.003.
  • Çömez, I.; Birinci, A.; Erdöl, R. Double Receding Contact Problem for a Rigid Stamp and Two Elastic Layers. Eur. J. Mech. A-Solid. 2004, 23, 301–309. DOI: 10.1016/j.euromechsol.2003.09.006.
  • Çömez, I.; El-Borgi, S.; Kahya, V.; Erdöl, R. Receding Contact Problem for Two-Layer Functionally Graded Media Indented by a Rigid Punch. Acta Mech. 2016, 227, 2493–2504. DOI: 10.1007/s00707-016-1648-8.
  • El-Borgi, S.; Abdelmoula, R.; Keer, L. A Receding Contact Plane Problem Between a Functionally Graded Layer and a Homogeneous Substrate. Int. J. Solids. Struct. 2006, 43, 658–674. DOI: 10.1016/j.ijsolstr.2005.04.017.
  • El-Borgi, S.; Usman, S.; Güler, M. A. A Frictional Receding Contact Plane Problem Between a Functionally Graded Layer and a Homogeneous Substrate. Int. J. Solids. Struct. 2014, 51, 4462–4476. DOI: 10.1016/j.ijsolstr.2014.09.017.
  • Rhimi, M.; El-Borgi, S.; Ben, S. W.; Jemaa, F. B. A Receding Contact Axisymmetric Problem Between a Functionally Graded Layer and a Homogeneous Substrate. Int. J. Solids. Struct. 2009, 46, 3633–3642. DOI: 10.1016/j.ijsolstr.2009.06.008.
  • Rhimi, M.; El-Borgi, S.; Lajnef, N. A Double Receding Contact Axisymmetric Problem Between a Functionally Graded Layer and a Homogeneous Substrate. Mech. Mater. 2011, 43(2011), 787–798. DOI: 10.1016/j.mechmat.2011.08.013.
  • Yan, J.; Li, X. Double Receding Contact Plane Problem Between a Functionally Graded Layer and an Elastic Layer. Eur. J. Mech. A-Solid. 2015, 53, 143–150. DOI: 10.1016/j.euromechsol.2015.04.001.
  • Yan, J.; Mi, C. On the Receding Contact Between an Inhomogeneously Coated Elastic Layer and a Homogeneous Half-Plane. Mech. Mater. 2017, 112, 18–27. DOI: 10.1016/j.mechmat.2017.05.007.
  • Muskhelishvili, N. I. Singular Integral Equations; The Netherlands: Noorghoff, Leyden, 1958.
  • Erdogan, F.; Gupta, G. D. On the Numerical Solution of Singular Integral Equations. Q. J. Appl. Mech. 1972, 29, 525–534. DOI: 10.1090/qam/408277.
  • Cao, G.; Liu, Y.; Niu, T. Indentation Response of Two-Dimensional Materials Mounted on Different Substrates. Int. J. Mech. Sci. 2018, 137, 96–104. DOI: 10.1016/j.ijmecsci.2018.01.018.
  • Cao, G.; Niu, T. Finite Element Modeling of the Indentation Behavior of Two-Dimensional Materials. Acta Mech. 2019, 230, 1367–1376. DOI: 10.1007/s00707-017-2020-3.
  • Sun, Y.; Wang, Y.; Wang, E.; Wang, B.; Zhao, H.; Zeng, Y.; Zhang, Q.; Wu, Y.; Gu, L.; Li, X., et al. Determining the Interlayer Shearing in Twisted Bilayer MoS2 by Nanoindentation. Nat. Comm. 2022, 3, 3898. DOI: 10.1038/s41467-022-31685-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.