565
Views
0
CrossRef citations to date
0
Altmetric
Original Article

A high-throughput technique to evaluate the probability distribution of strength of adhesively bonded joints after moisture absorption

, , , &
Received 26 Jul 2023, Accepted 11 Oct 2023, Published online: 19 Oct 2023

References

  • Banea, M. D.; da Silva, L. F. M. Adhesively Bonded Joints in Composite Materials: An Overview. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2009, 223(1), 1–18. DOI: 10.1243/14644207JMDA219.
  • Budhe, S.; Banea, M. D.; de Barros, S.; da Silva, L. F. M. An Updated Review of Adhesively Bonded Joints in Composite Materials. Int. J. Adhes. Adhes. 2017, 72, 30–42. DOI: 10.1016/j.ijadhadh.2016.10.010.
  • Dilthey, U.; Stein, L. Multimaterial Car Body Design: Challenge for Welding and Joining. Sci. Technol. Weld. Joining. 2006, 11(2), 135–142. DOI: 10.1179/174329306X85967.
  • Antelo, J.; Akhavan-Safar, A.; Carbas, R. J. C.; Marques, E. A. S.; Goyal, R.; da Silva, L. F. M. Replacing Welding with Adhesive Bonding: An Industrial Case Study. Int. J. Adhes. Adhes. 2022, 113, 103064. DOI: 10.1016/j.ijadhadh.2021.103064.
  • Beber, V. C.; Brede, M. Multiaxial Static and Fatigue Behaviour of Elastic and Structural Adhesives for Railway Applications. Procedia Struct. Integr. 2020, 28, 1950–1962. DOI: 10.1016/j.prostr.2020.11.018.
  • Kupski, J.; Teixeira de Freitas, S. Design of Adhesively Bonded Lap Joints with Laminated CFRP Adherends: Review, Challenges and New Opportunities for Aerospace Structures. Compos. Struct. 2021, 268, 113923. DOI: 10.1016/j.compstruct.2021.113923.
  • Speth, D. R.; Yang, Y. P.; Ritter, G. W. Qualification of Adhesives for Marine Composite-To-Steel Applications. Int. J. Adhes. Adhes. 2010, 30(2), 55–62. DOI: 10.1016/j.ijadhadh.2009.08.004.
  • Barnes, T. A.; Pashby, I. R. Joining Techniques for Aluminium Spaceframes Used in Automobiles: Part II - Adhesive Bonding and Mechanical Fasteners. J. Mater. Process. Technol. 2000, 99(1–3), 72–79. DOI: 10.1016/S0924-0136(99)00361-1.
  • Viana, G.; Costa, M.; Banea, M. D.; Da Silva, L. F. M. A Review on the Temperature and Moisture Degradation of Adhesive Joints. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2017, 231(5), 488–501. DOI: 10.1177/1464420716671503.
  • Lunder, O.; Olsen, B.; Nisancioglu, K. Pre-Treatment of AA6060 Aluminium Alloy for Adhesive Bonding. Int. J. Adhes. Adhes. 2002, 22(2), 143–150. DOI: 10.1016/S0143-7496(01)00049-5.
  • da Silva, L. F. M.; Rodrigues, T. N. S. S.; Figueiredo, M. A. V.; de Moura, M. F. S. F.; Chousal, J. A. G. Effect of Adhesive Type and Thickness on the Lap Shear Strength. J. Adhes. 2006, 82(11), 1091–1115. DOI: 10.1080/00218460600948511.
  • Volkersen, O. Die niektraftverteilung in zugbeanspruchten mit konstanten laschenquerschritten. Luftfahrtfor schung. 1938, 15, 41–47.
  • Goland, M.; Reissner, E. The Stresses in Cemented Joints. J. Appl. Mech. 1944, 11(1), A17–A27. DOI: 10.1115/1.4009336.
  • Delale, F.; Erdogan, F.; Aydinoglu, M. N. Stresses in Adhesively Bonded Joints: A Closed-Form Solution. J. Compos. Mater. 1981, 15(3), 249–271. DOI: 10.1177/002199838101500305.
  • Seo, D. W.; Lim, J. K. Tensile, Bending and Shear Strength Distributions of Adhesive-Bonded Butt Joint Specimens. Compos. Sci. Technol. 2005, 65(9), 1421–1427. DOI: 10.1016/j.compscitech.2004.12.013.
  • Jojibabu, P.; Jagannatham, M.; Haridoss, P.; Janaki Ram, G. D.; Deshpande, A. P.; Bakshi, S. R. Effect of Different Carbon Nano-Fillers on Rheological Properties and Lap Shear Strength of Epoxy Adhesive Joints. Compos. Part A Appl. Sci. Manuf. 2016, 82, 53–64. DOI: 10.1016/j.compositesa.2015.12.003.
  • Weibull, W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951, 18(3), 293–297. DOI: 10.1115/1.4010337.
  • Danzer, R.; Supancic, P.; Pascual, J.; Lube, T. Fracture Statistics of Ceramics - Weibull Statistics and Deviations from Weibull Statistics. Eng. Fract. Mech. 2007, 74(18), 2919–2932. DOI: 10.1016/j.engfracmech.2006.05.028.
  • Loidl, D.; Paris, O.; Rennhofer, H.; Müller, M.; Peterlik, H. Skin-Core Structure and Bimodal Weibull Distribution of the Strength of Carbon Fibers. Carbon. 2007, 45(14), 2801–2805. DOI: 10.1016/j.carbon.2007.09.011.
  • Naresh, K.; Shankar, K.; Velmurugan, R. Reliability Analysis of Tensile Strengths Using Weibull Distribution in Glass/Epoxy and Carbon/Epoxy Composites. Compos. B Eng. 2018, 133, 129–144. DOI: 10.1016/j.compositesb.2017.09.002.
  • Afendi, M.; Abdul Majid, M. S.; Daud, R.; Abdul Rahman, A.; Teramoto, T. Strength Prediction and Reliability of Brittle Epoxy Adhesively Bonded Dissimilar Joint. Int. J. Adhes. Adhes. 2013, 45, 21–31. DOI: 10.1016/j.ijadhadh.2013.03.008.
  • Fernandez, G.; Vandepitte, D.; Usabiaga, H.; Debruyne, S. Static and Cyclic Strength Properties of Brittle Adhesives with Porosity. Int. J. Fatigue. 2018, 117, 340–351. DOI: 10.1016/j.ijfatigue.2018.08.018.
  • Freed, Y.; Zobeiry, N.; Salviato, M. Development of Aviation Industry-Oriented Methodology for Failure Predictions of Brittle Bonded Joints Using Probabilistic Machine Learning. Compos. Struct. 2022, 297, 115979. DOI: 10.1016/j.compstruct.2022.115979.
  • Burrow, M. F.; Thomas, D.; Swain, M. V.; Tyas, M. J. Analysis of Tensile Bond Strengths Using Weibull Statistics. Biomater. 2004, 25(20), 5031–5035. DOI: 10.1016/j.biomaterials.2004.01.060.
  • Arenas, J. M.; Narbón, J. J.; Alía, C. Optimum Adhesive Thickness in Structural Adhesives Joints Using Statistical Techniques Based on Weibull Distribution. Int. J. Adhes. Adhes. 2010, 30(3), 160–165. DOI: 10.1016/j.ijadhadh.2009.12.003.
  • Vallée, T.; Correia, J. R.; Keller, T. Probabilistic Strength Prediction for Double Lap Joints Composed of Pultruded GFRP Profiles – Part II: Strength Prediction. Compos. Sci. Technol. 2006, 66(13), 1915–1930. DOI: 10.1016/j.compscitech.2006.04.001.
  • Vallée, T.; Keller, T.; Fourestey, G.; Fournier, B.; Correia, J. R. Adhesively Bonded Joints Composed of Pultruded Adherends: Considerations at the Upper Tail of the Material Strength Statistical Distribution. Probab. Eng. Mech. 2009, 24(3), 358–366. DOI: 10.1016/j.probengmech.2008.10.001.
  • Vallée, T.; Kaufmann, M.; Adams, R. D.; Albiez, M.; Correia, J. R.; Tannert, T. Are Probabilistic Methods a Way to Get Rid of Fudge Factors? Part II: Application and Examples. Int. J. Adhes. Adhes. 2023, 124, 103364. DOI: 10.1016/j.ijadhadh.2023.103364.
  • Adams, R. D.; Harris, J. A. The Influence of Local Geometry on the Strength of Adhesive Joints. Int. J. Adhes. Adhes. 1987, 7(2), 69–80. DOI: 10.1016/0143-7496(87)90092-3.
  • Kang, C.; Machado, J. J. M.; Sekiguchi, Y.; Ji, M.; Sato, C.; Naito, M. A Butt Shear Joint (BSJ) Specimen for High Throughput Testing of Adhesive Bonds. J. Adhes. 2023, 99(14), 2080–2096. DOI: 10.1080/00218464.2023.2170794.
  • Han, J.-W.; Sekiguchi, Y.; Shimamoto, K.; Akiyama, H.; Sato, C. Experimental Measurement of Moisture Distribution in the Adhesive Layer Using Near-Infrared Spectroscopy. J. Appl. Polym. Sci. 2023, 140(25), e53982. DOI: 10.1002/app.53982.
  • Nakamura, K.; Sekiguchi, Y.; Shimamoto, K.; Houjou, K.; Akiyama, H.; Sato, C. Creep Crack Growth Behavior During Hot Water Immersion of an Epoxy Adhesive Using a Spring-Loaded Double Cantilever Beam Test Method. Mater. 2023, 16(2), 607. DOI: 10.3390/ma16020607.
  • Houjou, K.; Sekiguchi, Y.; Shimamoto, K.; Akiyama, H.; Sato, C. Energy Release Rate and Crack Propagation Rate Behaviour of Moisture-Deteriorated Epoxy Adhesives Through the Double Cantilever Beam Method. J. Adhes. 2023, 99(6), 1016–1030. DOI: 10.1080/00218464.2022.2074295.
  • Shimamoto, K.; Batorova, S.; Houjou, K.; Akiyama, H.; Sato, C. Degradation of Epoxy Adhesive Containing Dicyandiamide and Carboxyl-Terminated Butadiene Acrylonitrile Rubber Due to Water with Open-Faced Specimens. J. Adhes. 2021, 97(15), 1388–1403. DOI: 10.1080/00218464.2020.1772061.
  • Shimamoto, K.; Akiyama, H. Estimating the Mechanical Residual Strength from IR Spectra Using Machine Learning for Degraded Adhesives. J. Adhes. 2022, 98(15), 2423–2445. DOI: 10.1080/00218464.2021.1978293.
  • Houjou, K.; Shimamoto, K.; Akiyama, H.; Sato, C. Experimental Investigations on the Effect of a Wide Range of Strain Rates on Mechanical Properties of Epoxy Adhesives, and Prediction of Creep and Impact Strengths. J. Adhes. 2022, 98(5), 449–463. DOI: 10.1080/00218464.2020.1840368.
  • Zanni-Deffarges, M. P.; Shanahan, M. E. R. Diffusion of Water into an Epoxy Adhesive: Comparison Between Bulk Behaviour and Adhesive Joints. Int. J. Adhes. Adhes. 1995, 15(3), 137–142. DOI: 10.1016/0143-7496(95)91624-F.
  • Cognard, J. Y.; Créac’hcadec, R.; Sohier, L.; Davies, P. Analysis of the Nonlinear Behavior of Adhesives in Bonded Assemblies–Comparison of TAST and Arcan Tests. Int. J. Adhes. Adhes. 2008, 28(8), 393–404. DOI: 10.1016/j.ijadhadh.2008.04.006.
  • Spaggiari, A.; Castagnetti, D.; Dragoni, E. Experimental Tests on Tubular Bonded Butt Specimens: Effect of Relief Grooves on Tensile Strength of the Adhesive. J. Adhes. 2012, 88(4–6), 499–512. DOI: 10.1080/00218464.2012.660831.
  • Créac’hcadec, R.; Sohier, L.; Cellard, C.; Gineste, B. A Stress Concentration-Free Bonded Arcan Tensile Compression Shear Test Specimen for the Evaluation of Adhesive Mechanical Response. Int. J. Adhes. Adhes. 2015, 61, 81–92. DOI: 10.1016/j.ijadhadh.2015.05.003.
  • Hodge, B. M.; Milligan, M. Wind Power Forecasting Error Distributions Over Multiple Timescales. 2011 IEEE Power and Energy Society General Meeting, Michigan, IEEE, 2011. pp. 1–8.
  • Bakouch, H. S.; Al-Zahrani, B. M.; Al-Shomrani, A. A.; Marchi, V. A. A.; Louzada, F. An Extended Lindley Distribution. J. Korean Statis. Soc. 2012, 41(1), 75–85. DOI: 10.1016/j.jkss.2011.06.002.
  • Ford, H. L.; Ravelo, A. C.; Polissar, P. J. Reduced El Niño–Southern Oscillation During the Last Glacial Maximum. Science. 2015, 347(6219), 255–258. DOI: 10.1126/science.1258437.
  • Krithikadatta, J. Normal Distribution. J Conserv Dent. 2014, 17(1), 96–97. DOI: 10.4103/0972-0707.124171.
  • Lyles, R. H.; Kupper, L. L. On Strategies for Comparing Occupational Exposure Data to Limits. Amer. Indus. Hygiene Associat. J. 1996, 57(1), 6–15. DOI: 10.1080/15428119691015430.
  • Koch, A. L. The Logarithm in Biology 1. Mechanisms Generating the Log-Normal Distribution Exactly. J. Theoret. Biol. 1966, 12(2), 276–290. DOI: 10.1016/0022-5193(66)90119-6.
  • Rinne, H. The Weibull Distribution: A Handbook; Florida: CRC Press, 2008.
  • Husak, G. J.; Michaelsen, J.; Funk, C. Use of the Gamma Distribution to Represent Monthly Rainfall in Africa for Drought Monitoring Applications. Int. J. Climatol. 2007, 27(7), 935–944. DOI: 10.1002/joc.1441.
  • Cochran, W. G. The χ2 Test of Goodness of Fit. Ann. Math. Statist. 1952, 23(3), 315–345. https://www.jstor.org/stable/2236678.
  • Ahlgren, P.; Jarneving, B.; Rousseau, R. Requirements for a Cocitation Similarity Measure, with Special Reference to Pearson’s Correlation Coefficient. J. Ameri. Soc. Informat. Sci. Technol. 2003, 54(6), 550–560. DOI: 10.1002/asi.10242.
  • Magee, L. R2 Measures Based on Wald and Likelihood Ratio Joint Significance Tests. The Amer. Statis. 1990, 44(3), 250–253. DOI: 10.1080/00031305.1990.10475731.