87
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Durability of an adhesively bonded joint between steel ship hull and sandwich superstructure pre-exposed to saline environment

, , , , , & show all
Pages 985-1014 | Received 15 Aug 2023, Accepted 30 Oct 2023, Published online: 16 Nov 2023

References

  • Heshmati, M.; Haghani, R.; Al-Emrani, M. Durability of Bonded FRP-To-Steel Joints: Effects of Moisture, de-Icing Salt Solution, Temperature and FRP Type. Compos. Part B Eng. 2017, 119, 153–167. DOI: 10.1016/j.compositesb.2017.03.049.
  • Arouche, M. M.; Saleh, M. N.; Teixeira de Freitas, S.; de Barros, S. Effect of Salt Spray Ageing on the Fracture of Composite-To-Metal Bonded Joints. Int. J. Adhes. Adhes. 2021, 108(April), 102885. DOI: 10.1016/j.ijadhadh.2021.102885.
  • Hirulkar, N. S.; Jaiswal, P. R.; Reis, P. N. B.; Ferreira, J. A. M. Effect of Hygrothermal Aging and Cyclic Thermal Shocks on the Mechanical Performance of Single-Lap Adhesive Joints. Int. J. Adhes. Adhes. [Internet]. 2020, 99, 102584. DOI: 10.1016/j.ijadhadh.2020.102584.
  • Hirulkar, N. S.; Jaiswal, P. R.; Reis, P. N. B.; Ferreira, J. A. M. Bending Strength of Single-Lap Adhesive Joints Under Hygrothermal Aging Combined with Cyclic Thermal Shocks. J. Adhes. [Internet]. 2019, 00(00), 1–15. DOI: 10.1080/00218464.2019.1681981.
  • Sriraman, M. R.; Pidaparti, R. M. Crack Initiation Life of Materials Under Combined Pitting Corrosion and Cyclic Loading. J. Mater. Eng. Perform. 2010, 19(1), 7–12. DOI: 10.1007/s11665-009-9379-9.
  • Karbhari, V. M.; Shulley, S. B. Use of Composites for Rehabilitation of Steel Structures—Determination of Bond Durability. J. Mater. Civ. Eng. 1995, 7(4), 239–245. DOI: 10.1061/(ASCE)0899-1561(1995)7:4(239).
  • Borrie, D.; Liu, H. B.; Zhao, X. L.; Singh Raman, R. K.; Bai, Y. Bond Durability of Fatigued CFRP-Steel Double-Lap Joints Pre-Exposed to Marine Environment. Compos. Struct. 2015, 131, 799–809. DOI: 10.1016/j.compstruct.2015.06.021.
  • Vucko, F.; LeBozec, N.; Thierry, D.; Weber, B.; Dosdat, L.; Luckeneder, G.; Bschorr, T.; Rother, K.; Sciaboni, C.; Sczepanski, J., et al. Combined Corrosion and Fatigue Performance of Joined Materials for Automotive Applications. Mater. Corros. 2016, 67(11), 1143–1151.
  • Zhang, K.; Li, H.; Cheng, H.; Luo, B.; Liu, P. Combined Effects of Seawater Ageing and Fatigue Loading on the Bearing Performance and Failure Mechanism of CFRP/CFRP Single-Lap Bolted Joints. Compos. Struct. [Internet]. 2020, 234(October 2019), 111677. DOI: 10.1016/j.compstruct.2019.111677.
  • Fisher, J. W. Evolution of Fatigue-Resistant Steel Bridges. Trans. Res. Record. 1997, 1594(1), 5–17. DOI: 10.3141/1594-01.
  • Malarvizhi, S.; Balasubramanian, V. Effects of Welding Processes and Post-Weld Aging Treatment on Fatigue Behavior of AA2219 Aluminium Alloy Joints. J. Mater. Eng. Perform. 2011, 20(3), 359–367. DOI: 10.1007/s11665-010-9682-5.
  • Zhao, X. L.; Zhang, L. State-Of-The-Art Review on FRP Strengthened Steel Structures. Eng. Struct. 2007, 29(8), 1808–1823. DOI: 10.1016/j.engstruct.2006.10.006.
  • Domínguez Ruiz, F. J.; Carral Couce, L. M. Hybrid Joint Between Steel Deck and Fiberglass Superstructure. In Developments and Advances in Defense and Security; Rocha, Á. Guarda, T., Eds.; Springer International Publishing: Cham, 2018; pp. 284–295.
  • Cao, J.; Grenestedt, J. L. Test of a Redesigned Glass-Fiber Reinforced Vinyl Ester to Steel Joint for Use Between a Naval GRP Superstructure and a Steel Hull. Compos. Struct. 2003, 60(4), 439–445. DOI: 10.1016/S0263-8223(03)00020-5.
  • Boyd, S. W.; Blake, J. I. R.; Shenoi, R. A.; Kapadia, A. Integrity of Hybrid Steel-To-Composite Joints for Marine Application. Proc. Inst. Mech Eng. Part M. J. Eng. Marit. Environ. 2004, 218(4), 235–246. DOI: 10.1177/147509020421800403.
  • Kharghani, N.; Guedes Soares, C. Mechanical Properties Evaluation of the Components of a Failed Hybrid Steel-FRP Balcony Overhang in Ships. Mar. Struct. 2019, 68(August), 102647. DOI: 10.1016/j.marstruc.2019.102647.
  • Kharghani, N.; Soares, C. G.; Tsouvalis, N. G. Experimental and Numerical Study of the Bolt Reinforcement of a Composite-To-Steel Butt-Joint Under Three-Point Bending Test. Mar. Struct. [Internet]. 2019, 63(July 2017), 384–403. DOI: 10.1016/j.marstruc.2018.08.009.
  • Boyd, S. W. Strength and Durability of Steel to Composite Joints for Marine Application. 2006.
  • Mahmoud, H. N.; Riveros, G. A.; Memari, M.; Valsangkar, A.; Ahmadi, B. Underwater Large-Scale Experimental Fatigue Assessment of CFRP-Retrofitted Steel Panels. J. Struct. Eng. 2018, 144(10), 4018183. DOI: 10.1061/(ASCE)ST.1943-541X.0002184.
  • Banea, M. D.; Da Silva, L. F. M. Adhesively Bonded Joints in Composite Materials: An Overview. Proc. Inst. Mech. Eng. Part L J Mater. Des. Appl. 2009, 223(1), 1–18. DOI: 10.1243/14644207JMDA219.
  • Adams, R. D.; Wake, W. C. Structural Adhesive Joints in Engineering; Elsevier applied science publishers Ltd Crown House, 1986.
  • Jaiswal, P. R.; Iyer Kumar, R.; Rooms, K.; Rousseau, J.; Pondicherry, K.; De Waele, W. Influence of Accelerated Corrosion on Bi-Material Steel-CFRP Double-Lap Joints Bonded with Thick Adhesive. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2023, 237(1), 38–51. DOI: 10.1177/09544089221105850.
  • Katsivalis, I.; Thomsen, O. T.; Feih, S.; Achintha, M. Failure Prediction and Optimal Selection of Adhesives for Glass/Steel Adhesive Joints. Eng. Struct. [Internet]. 2019, 201(October), 109646. DOI: 10.1016/j.engstruct.2019.109646.
  • Saleh, M. N.; Budzik, M. K.; Saeedifar, M.; Zarouchas, D.; Teixeira De Freitas, S. On the Influence of the Adhesive and the Adherend Ductility on Mode I Fracture Characterization of Thick Adhesively-Bonded Joints. Int. J. Adhes. Adhes. 2022, 115, 115. DOI: 10.1016/j.ijadhadh.2022.103123.
  • Fernandes, P.; Viana, G.; Carbas, R. J. C.; Costa, M.; da Silva, L. F. M.; Banea, M. D. The Influence of Water on the Fracture Envelope of an Adhesive Joint. Theor. Appl. Fract. Mech. 2017, 89(July), 1–15. DOI: 10.1016/j.tafmec.2017.01.001.
  • Saeedifar, M.; Saleh, M. N.; De Freitas, S. T.; Zarouchas, D. Damage Characterization of Adhesively-Bonded Bi-Material Joints Using Acoustic Emission. Compos. Part B Eng. 2019, 176(August), 107356. DOI: 10.1016/j.compositesb.2019.107356.
  • Jaiswal, P. R.; Kumar, R. I.; Saeedifar, M.; Saleh, M. N.; Luyckx, G.; De Waele, W. Deformation and Damage Evolution of a Full-Scale Adhesive Joint Between a Steel Bracket and a Sandwich Panel for Naval Application. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235(3), 571–584. DOI: 10.1177/0954406220947122.
  • Starink, L.; Mouton, L. Guidelines for the Qualification of Adhesively Bonded Hybrid Structures in Primary Structures for Marine Applications. 2021.
  • Kumar, R. I.; Jaiswal, P.; De Waele, W. Fatigue Damage and Life Evaluation of Thick Bi-Material Double Strap Joints for Use in Marine Applications. Fatigue Fract. Eng. Mater. Struct. 2022, 45(7), 2099–2111. DOI: 10.1111/ffe.13709.
  • Jaiswal, P. R.; Kumar, R. I.; De Waele, W. Unified Methodology for Characterisation of Global Fatigue Damage Evolution in Adhesively Bonded Joints. Frat. ed. Integrita. Strutt. 2020, 14(53), 26–37. DOI: 10.3221/IGF-ESIS.53.03.
  • Leronni, A.; Fleck, N. A. Delamination Growth of a Sandwich Layer by Diffusion of a Corrosive Species. J. Mech. Phys. Solids. 2023, 172, 172. DOI: 10.1016/j.jmps.2022.105179.
  • Askarinejad, S.; Deshpande, V.; Fleck, N. Interfacial Delamination of a Sandwich Layer by Aqueous Corrsion. Corros. Sci. 2022, 203(4 may), 110356. DOI: 10.1016/j.corsci.2022.110356.
  • Askarinejad, S.; Martínez-Pañeda, E.; Cuesta, I. I.; Fleck, N. Mode II Fracture of an MMA Adhesive Layer: Theory versus Experiment. Eu.R J. Mech. A/solids. Mar, 2021, 86, 104133. DOI: 10.1016/j.euromechsol.2020.104133.
  • Saeedifar, M.; Saleh, M. N.; Krairi, A.; de Freitas ST; Zarouchas, D. Structural Integrity Assessment of a Full-Scale Adhesively-Bonded Bi-Material Joint for Maritime Applications. Thin-Walled Struct. [Internet]. 2023, 184(September 2022), 110487. Available from. DOI: 10.1016/j.tws.2022.110487.
  • Saleh, M.; Venkatesan, P.; Askarinejad, S.; Katsivalis, I. Deliverable of Quality Report: D1.3.2: Material Properties as a Function of Environmental and Operational Conditions. 2020, 1–53.
  • Mouton, L.; Stéphane, P.; Verhaeghe, C.; Marcel, E. Composite Superstructure Bonded to a Navy Ship Steel Hull: Characterisation of the Wave. In. 2019, 1–11.
  • Rules for the Classification of Steel Ships Part B 8-11. Vol. 33. 2021.
  • AS DETNV. Design, Fabrication, Operation and Qualification of Bonded Repair of Steel Structures; DNV-RP-C30, Recommended Practice: Bærum, Norway, DNV, 2012.
  • Bordes, M.; Davies, P.; Cognard, J. Y.; Sohier, L.; Sauvant-Moynot, V.; Galy, J. Prediction of Long Term Strength of Adhesively Bonded Steel/Epoxy Joints in Sea Water. Int. J. Adhes. Adhes. 2009, 29(6), 595–608. DOI: 10.1016/j.ijadhadh.2009.02.013.
  • Shewmon, P. Diffusion in Solids; The Minerals, Metals & Materials Society, 2016.
  • Bird, R. B.; Stewart, W. E.; Lightfoot, E. N. Transport Phenomena, Revised 2nd Edition [Internet]. Wiley; 2006. p. 928. https://www.wiley.com/en-us/Transport+Phenomena%2C+Revised+2nd+Edition-p-9780470508633.
  • Martínez-Pañeda, E.; Harris, Z. D.; Fuentes-Alonso, S.; Scully, J. R.; Burns, J. T. On the Suitability of Slow Strain Rate Tensile Testing for Assessing Hydrogen Embrittlement Susceptibility. Corros. Sci. 2020, 163(November 2019), 108291. DOI: 10.1016/j.corsci.2019.108291.
  • Katsivalis, I.; Feih, S. Prediction of moisture diffusion and failure in glass/steel adhesive joints. Glas. Struct. Eng. [Internet]. 2022, 7(3), 381–397. DOI: 10.1007/s40940-022-00194-w.
  • International Association of Classification Societies. No. 47 Shipbuilding and Repair Quality Standard (Rev. 7 June 2013), 2013, 1996, 1–63.
  • ASTM. ASTM E1417/E1417M - Standard Practice for Liquid Penetrant Testing, 2010; Vol. E1417, 1–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.